In this paper, we aim to develop a general way to generalize existing segmentation models to samples with unknown appearance shift when deployed in daily clinical practice. We propose an effective test-time bi-directional adaptation solution for this aim by combining two complementary strategies.
- Python 3.8
- Check the requirements.txt
pip install -r requirements.txt
cfg = Config({
"train_dir": "", ## Path to image folder
"label_dir": "", ## Path to label folder
})
CUDA_VISIBLE_DEVICES=<gpu_id> python code/train.py.py --dataset "your dateset name"
Arguments adain
, osa
, wosa
for different style transfer modules
python code/seg_test.py --wosa
python code/seg_test.py --osa
python code/seg_test.py --adain
python code/seg_augself.py ## AugSelf
python code/seg_augself.py --wosa ## WOSA-AugSelf