Skip to content
/ can Public

🤔 When in Doubt: Improving Classification Performance with Alternating Normalization [Findings of EMNLP2021]

License

Notifications You must be signed in to change notification settings

KMnP/can

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

When in Doubt: Improving Classification Performance with Alternating Normalization

Findings of EMNLP 2021

Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoav Artzi and Claire Cardie
Cornell University, Facebook AI

**arXiv**: https://arxiv.org/abs/2109.13449
teaser

Environment settings

This project is tested under Python 3.6, pytorch 1.5.0, torchvision 0.6.0

Preparation

  1. Download the data and put the data folder under <DATA_PATH>.
  2. For tuning process, you need to check how many cpus you have first. This reporitory assumes the environment has at least 40 cpus.

Simulation experiments

We have provided the randomly generately array produced from step 1 in the data folder.

# step 1. generate random matrices
python experiments_simulation.py --step 1 \
    --data-root <DATA_PATH>
# step 2. get results
python experiments_simulation.py --step 2 \
    --data-root <DATA_PATH>

Empirical experiments

Ultra-fine entity typing

# Denoise
python experiments_text.py \
    --dataset ultrafine_entity_typing \
    --data-root=<DATA_PATH> --model-type denoise

# multitask
python experiments_text.py \
    --dataset ultrafine_entity_typing --data-root=<DATA_PATH>

Relation extraction

python experiments_text.py \
    --dataset dialogue_re --data-root=<DATA_PATH>

ImageNet

# step 1: prepare the imagenet logits and targets for training and val set
python prepare_imagenet.py --out-dir <OUT_DIR> --data-root=<DATA_PATH>

# step 2: get results
python experiments_visual.py --dataset imagenet

License

This repo are released under the CC-BY-NC 4.0 license. See LICENSE for additional details.

About

🤔 When in Doubt: Improving Classification Performance with Alternating Normalization [Findings of EMNLP2021]

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published