Skip to content

Kakachia777/Enterprise-AI-Orchestration-Platform

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Enterprise AI Orchestration Platform (EAOP)

A sophisticated AI platform that orchestrates multiple AI models and services, designed for enterprise-scale applications. This platform demonstrates advanced AI architecture patterns and best practices for production deployments.

Created by: Kakachia777

Features

  • Multiple AI Model Support

    • GPT-4o Integration for advanced text processing
    • Computer Vision capabilities using YOLOv8
    • Sentence Embeddings for semantic search and similarity
  • Enterprise-Grade Architecture

    • Scalable FastAPI backend
    • Asynchronous processing
    • Comprehensive logging and monitoring
    • MLOps integration with MLflow
  • Security

    • OAuth2 authentication
    • JWT token-based authorization
    • CORS support
    • SSL/TLS encryption
  • Monitoring & Observability

    • Prometheus metrics
    • MLflow experiment tracking
    • Comprehensive logging

Technical Stack

  • Core AI/ML

    • OpenAI GPT-4o
    • PyTorch
    • Transformers
    • Sentence-Transformers
  • Backend

    • FastAPI
    • Uvicorn
    • Python 3.9+
  • Monitoring

    • MLflow
    • Prometheus
    • Grafana
  • Data Storage

    • MongoDB
    • Redis

Getting Started

  1. Clone the repository:
git clone https://github.com/Kakachia777/enterprise-ai-platform.git
cd enterprise-ai-platform
  1. Create a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Set up environment variables:
cp .env.example .env
# Edit .env with your configuration
  1. Start the application:
python src/api/main.py

API Documentation

Once the application is running, visit:

  • Swagger UI: http://localhost:8000/docs
  • ReDoc: http://localhost:8000/redoc

Architecture Overview

The platform follows a modular architecture:

  • src/core/: Core AI orchestration and configuration
  • src/api/: FastAPI application and endpoints
  • config/: Configuration files
  • models/: Model artifacts and caches
  • data/: Data storage directories
  • tests/: Test suites

MLOps Integration

The platform includes comprehensive MLOps capabilities:

  1. Experiment Tracking

    • All model runs are tracked in MLflow
    • Metrics, parameters, and artifacts are logged automatically
  2. Model Monitoring

    • Real-time performance metrics
    • Model drift detection
    • Resource utilization tracking
  3. Deployment Pipeline

    • Containerized deployment support
    • Model versioning
    • A/B testing capabilities

Security Considerations

  1. Authentication & Authorization

    • OAuth2 with JWT tokens
    • Role-based access control
    • Token refresh mechanism
  2. Data Security

    • Encrypted data storage
    • Secure API endpoints
    • Input validation and sanitization

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contact

For any queries or support, please contact:

  • Owner: Kakachia777
  • Issue Tracker: GitHub Issues

About

Enterprise-AI-Orchestration-Platform

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published