Skip to content

Commit

Permalink
feat: add weekly contest 368 (doocs#1862)
Browse files Browse the repository at this point in the history
  • Loading branch information
yanglbme authored Oct 22, 2023
1 parent 2e5040d commit 763b141
Show file tree
Hide file tree
Showing 19 changed files with 853 additions and 57 deletions.
101 changes: 101 additions & 0 deletions solution/2900-2999/2908.Minimum Sum of Mountain Triplets I/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
# [2908. 元素和最小的山形三元组 I](https://leetcode.cn/problems/minimum-sum-of-mountain-triplets-i)

[English Version](/solution/2900-2999/2908.Minimum%20Sum%20of%20Mountain%20Triplets%20I/README_EN.md)

## 题目描述

<!-- 这里写题目描述 -->

<p>给你一个下标从 <strong>0</strong> 开始的整数数组 <code>nums</code> 。</p>

<p>如果下标三元组 <code>(i, j, k)</code> 满足下述全部条件,则认为它是一个 <strong>山形三元组</strong> :</p>

<ul>
<li><code>i &lt; j &lt; k</code></li>
<li><code>nums[i] &lt; nums[j]</code> 且 <code>nums[k] &lt; nums[j]</code></li>
</ul>

<p>请你找出 <code>nums</code> 中 <strong>元素和最小</strong> 的山形三元组,并返回其 <strong>元素和</strong> 。如果不存在满足条件的三元组,返回 <code>-1</code> 。</p>

<p>&nbsp;</p>

<p><strong class="example">示例 1:</strong></p>

<pre>
<strong>输入:</strong>nums = [8,6,1,5,3]
<strong>输出:</strong>9
<strong>解释:</strong>三元组 (2, 3, 4) 是一个元素和等于 9 的山形三元组,因为:
- 2 &lt; 3 &lt; 4
- nums[2] &lt; nums[3] 且 nums[4] &lt; nums[3]
这个三元组的元素和等于 nums[2] + nums[3] + nums[4] = 9 。可以证明不存在元素和小于 9 的山形三元组。
</pre>

<p><strong class="example">示例 2:</strong></p>

<pre>
<strong>输入:</strong>nums = [5,4,8,7,10,2]
<strong>输出:</strong>13
<strong>解释:</strong>三元组 (1, 3, 5) 是一个元素和等于 13 的山形三元组,因为:
- 1 &lt; 3 &lt; 5
- nums[1] &lt; nums[3] 且 nums[5] &lt; nums[3]
这个三元组的元素和等于 nums[1] + nums[3] + nums[5] = 13 。可以证明不存在元素和小于 13 的山形三元组。
</pre>

<p><strong class="example">示例 3:</strong></p>

<pre>
<strong>输入:</strong>nums = [6,5,4,3,4,5]
<strong>输出:</strong>-1
<strong>解释:</strong>可以证明 nums 中不存在山形三元组。
</pre>

<p>&nbsp;</p>

<p><strong>提示:</strong></p>

<ul>
<li><code>3 &lt;= nums.length &lt;= 50</code></li>
<li><code>1 &lt;= nums[i] &lt;= 50</code></li>
</ul>

## 解法

<!-- 这里可写通用的实现逻辑 -->

<!-- tabs:start -->

### **Python3**

<!-- 这里可写当前语言的特殊实现逻辑 -->

```python

```

### **Java**

<!-- 这里可写当前语言的特殊实现逻辑 -->

```java

```

### **C++**

```cpp

```

### **Go**

```go

```

### **...**

```
```

<!-- tabs:end -->
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# [2908. Minimum Sum of Mountain Triplets I](https://leetcode.com/problems/minimum-sum-of-mountain-triplets-i)

[中文文档](/solution/2900-2999/2908.Minimum%20Sum%20of%20Mountain%20Triplets%20I/README.md)

## Description

<p>You are given a <strong>0-indexed</strong> array <code>nums</code> of integers.</p>

<p>A triplet of indices <code>(i, j, k)</code> is a <strong>mountain</strong> if:</p>

<ul>
<li><code>i &lt; j &lt; k</code></li>
<li><code>nums[i] &lt; nums[j]</code> and <code>nums[k] &lt; nums[j]</code></li>
</ul>

<p>Return <em>the <strong>minimum possible sum</strong> of a mountain triplet of</em> <code>nums</code>. <em>If no such triplet exists, return</em> <code>-1</code>.</p>

<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>

<pre>
<strong>Input:</strong> nums = [8,6,1,5,3]
<strong>Output:</strong> 9
<strong>Explanation:</strong> Triplet (2, 3, 4) is a mountain triplet of sum 9 since:
- 2 &lt; 3 &lt; 4
- nums[2] &lt; nums[3] and nums[4] &lt; nums[3]
And the sum of this triplet is nums[2] + nums[3] + nums[4] = 9. It can be shown that there are no mountain triplets with a sum of less than 9.
</pre>

<p><strong class="example">Example 2:</strong></p>

<pre>
<strong>Input:</strong> nums = [5,4,8,7,10,2]
<strong>Output:</strong> 13
<strong>Explanation:</strong> Triplet (1, 3, 5) is a mountain triplet of sum 13 since:
- 1 &lt; 3 &lt; 5
- nums[1] &lt; nums[3] and nums[5] &lt; nums[3]
And the sum of this triplet is nums[1] + nums[3] + nums[5] = 13. It can be shown that there are no mountain triplets with a sum of less than 13.
</pre>

<p><strong class="example">Example 3:</strong></p>

<pre>
<strong>Input:</strong> nums = [6,5,4,3,4,5]
<strong>Output:</strong> -1
<strong>Explanation:</strong> It can be shown that there are no mountain triplets in nums.
</pre>

<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>

<ul>
<li><code>3 &lt;= nums.length &lt;= 50</code></li>
<li><code>1 &lt;= nums[i] &lt;= 50</code></li>
</ul>

## Solutions

<!-- tabs:start -->

### **Python3**

```python

```

### **Java**

```java

```

### **C++**

```cpp

```

### **Go**

```go

```

### **...**

```
```

<!-- tabs:end -->
101 changes: 101 additions & 0 deletions solution/2900-2999/2909.Minimum Sum of Mountain Triplets II/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
# [2909. 元素和最小的山形三元组 II](https://leetcode.cn/problems/minimum-sum-of-mountain-triplets-ii)

[English Version](/solution/2900-2999/2909.Minimum%20Sum%20of%20Mountain%20Triplets%20II/README_EN.md)

## 题目描述

<!-- 这里写题目描述 -->

<p>给你一个下标从 <strong>0</strong> 开始的整数数组 <code>nums</code> 。</p>

<p>如果下标三元组 <code>(i, j, k)</code> 满足下述全部条件,则认为它是一个 <strong>山形三元组</strong> :</p>

<ul>
<li><code>i &lt; j &lt; k</code></li>
<li><code>nums[i] &lt; nums[j]</code> 且 <code>nums[k] &lt; nums[j]</code></li>
</ul>

<p>请你找出 <code>nums</code> 中 <strong>元素和最小</strong> 的山形三元组,并返回其 <strong>元素和</strong> 。如果不存在满足条件的三元组,返回 <code>-1</code> 。</p>

<p>&nbsp;</p>

<p><strong class="example">示例 1:</strong></p>

<pre>
<strong>输入:</strong>nums = [8,6,1,5,3]
<strong>输出:</strong>9
<strong>解释:</strong>三元组 (2, 3, 4) 是一个元素和等于 9 的山形三元组,因为:
- 2 &lt; 3 &lt; 4
- nums[2] &lt; nums[3] 且 nums[4] &lt; nums[3]
这个三元组的元素和等于 nums[2] + nums[3] + nums[4] = 9 。可以证明不存在元素和小于 9 的山形三元组。
</pre>

<p><strong class="example">示例 2:</strong></p>

<pre>
<strong>输入:</strong>nums = [5,4,8,7,10,2]
<strong>输出:</strong>13
<strong>解释:</strong>三元组 (1, 3, 5) 是一个元素和等于 13 的山形三元组,因为:
- 1 &lt; 3 &lt; 5
- nums[1] &lt; nums[3] 且 nums[5] &lt; nums[3]
这个三元组的元素和等于 nums[1] + nums[3] + nums[5] = 13 。可以证明不存在元素和小于 13 的山形三元组。
</pre>

<p><strong class="example">示例 3:</strong></p>

<pre>
<strong>输入:</strong>nums = [6,5,4,3,4,5]
<strong>输出:</strong>-1
<strong>解释:</strong>可以证明 nums 中不存在山形三元组。
</pre>

<p>&nbsp;</p>

<p><strong>提示:</strong></p>

<ul>
<li><code>3 &lt;= nums.length &lt;= 10<sup>5</sup></code></li>
<li><code>1 &lt;= nums[i] &lt;= 10<sup>8</sup></code></li>
</ul>

## 解法

<!-- 这里可写通用的实现逻辑 -->

<!-- tabs:start -->

### **Python3**

<!-- 这里可写当前语言的特殊实现逻辑 -->

```python

```

### **Java**

<!-- 这里可写当前语言的特殊实现逻辑 -->

```java

```

### **C++**

```cpp

```

### **Go**

```go

```

### **...**

```
```

<!-- tabs:end -->
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# [2909. Minimum Sum of Mountain Triplets II](https://leetcode.com/problems/minimum-sum-of-mountain-triplets-ii)

[中文文档](/solution/2900-2999/2909.Minimum%20Sum%20of%20Mountain%20Triplets%20II/README.md)

## Description

<p>You are given a <strong>0-indexed</strong> array <code>nums</code> of integers.</p>

<p>A triplet of indices <code>(i, j, k)</code> is a <strong>mountain</strong> if:</p>

<ul>
<li><code>i &lt; j &lt; k</code></li>
<li><code>nums[i] &lt; nums[j]</code> and <code>nums[k] &lt; nums[j]</code></li>
</ul>

<p>Return <em>the <strong>minimum possible sum</strong> of a mountain triplet of</em> <code>nums</code>. <em>If no such triplet exists, return</em> <code>-1</code>.</p>

<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>

<pre>
<strong>Input:</strong> nums = [8,6,1,5,3]
<strong>Output:</strong> 9
<strong>Explanation:</strong> Triplet (2, 3, 4) is a mountain triplet of sum 9 since:
- 2 &lt; 3 &lt; 4
- nums[2] &lt; nums[3] and nums[4] &lt; nums[3]
And the sum of this triplet is nums[2] + nums[3] + nums[4] = 9. It can be shown that there are no mountain triplets with a sum of less than 9.
</pre>

<p><strong class="example">Example 2:</strong></p>

<pre>
<strong>Input:</strong> nums = [5,4,8,7,10,2]
<strong>Output:</strong> 13
<strong>Explanation:</strong> Triplet (1, 3, 5) is a mountain triplet of sum 13 since:
- 1 &lt; 3 &lt; 5
- nums[1] &lt; nums[3] and nums[5] &lt; nums[3]
And the sum of this triplet is nums[1] + nums[3] + nums[5] = 13. It can be shown that there are no mountain triplets with a sum of less than 13.
</pre>

<p><strong class="example">Example 3:</strong></p>

<pre>
<strong>Input:</strong> nums = [6,5,4,3,4,5]
<strong>Output:</strong> -1
<strong>Explanation:</strong> It can be shown that there are no mountain triplets in nums.
</pre>

<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>

<ul>
<li><code>3 &lt;= nums.length &lt;= 10<sup>5</sup></code></li>
<li><code>1 &lt;= nums[i] &lt;= 10<sup>8</sup></code></li>
</ul>

## Solutions

<!-- tabs:start -->

### **Python3**

```python

```

### **Java**

```java

```

### **C++**

```cpp

```

### **Go**

```go

```

### **...**

```
```

<!-- tabs:end -->
Loading

0 comments on commit 763b141

Please sign in to comment.