Skip to content

Commit

Permalink
Updating the ApplyOnnxAPI to meet the new API standards. (dotnet#3086)
Browse files Browse the repository at this point in the history
  • Loading branch information
rogancarr authored Mar 26, 2019
1 parent a18be69 commit 9caafb0
Show file tree
Hide file tree
Showing 4 changed files with 11 additions and 11 deletions.
2 changes: 1 addition & 1 deletion docs/samples/Microsoft.ML.Samples/Dynamic/OnnxTransform.cs
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ public static void Example()
var mlContext = new MLContext();
var data = GetTensorData();
var idv = mlContext.Data.LoadFromEnumerable(data);
var pipeline = mlContext.Transforms.ApplyOnnxModel(modelPath, new[] { outputInfo.Key }, new[] { inputInfo.Key });
var pipeline = mlContext.Transforms.ApplyOnnxModel(new[] { outputInfo.Key }, new[] { inputInfo.Key }, modelPath);

// Run the pipeline and get the transformed values
var transformedValues = pipeline.Fit(idv).Transform(idv);
Expand Down
8 changes: 4 additions & 4 deletions src/Microsoft.ML.OnnxTransformer/OnnxCatalog.cs
Original file line number Diff line number Diff line change
Expand Up @@ -33,15 +33,15 @@ public static OnnxScoringEstimator ApplyOnnxModel(this TransformsCatalog catalog
/// Applies a pre-trained Onnx model.
/// </summary>
/// <param name="catalog">The transform's catalog.</param>
/// <param name="modelFile">The path of the file containing the ONNX model.</param>
/// <param name="outputColumnName">The output column resulting from the transformation.</param>
/// <param name="inputColumnName">The input column.</param>
/// <param name="modelFile">The path of the file containing the ONNX model.</param>
/// <param name="gpuDeviceId">Optional GPU device ID to run execution on, <see langword="null" /> to run on CPU.</param>
/// <param name="fallbackToCpu">If GPU error, raise exception or fallback to CPU.</param>
public static OnnxScoringEstimator ApplyOnnxModel(this TransformsCatalog catalog,
string modelFile,
string outputColumnName,
string inputColumnName,
string modelFile,
int? gpuDeviceId = null,
bool fallbackToCpu = false)
=> new OnnxScoringEstimator(CatalogUtils.GetEnvironment(catalog), new[] { outputColumnName }, new[] { inputColumnName }, modelFile, gpuDeviceId, fallbackToCpu);
Expand All @@ -50,15 +50,15 @@ public static OnnxScoringEstimator ApplyOnnxModel(this TransformsCatalog catalog
/// Applies a pre-trained Onnx model.
/// </summary>
/// <param name="catalog">The transform's catalog.</param>
/// <param name="modelFile">The path of the file containing the ONNX model.</param>
/// <param name="outputColumnNames">The output columns resulting from the transformation.</param>
/// <param name="inputColumnNames">The input columns.</param>
/// <param name="modelFile">The path of the file containing the ONNX model.</param>
/// <param name="gpuDeviceId">Optional GPU device ID to run execution on, <see langword="null" /> to run on CPU.</param>
/// <param name="fallbackToCpu">If GPU error, raise exception or fallback to CPU.</param>
public static OnnxScoringEstimator ApplyOnnxModel(this TransformsCatalog catalog,
string modelFile,
string[] outputColumnNames,
string[] inputColumnNames,
string modelFile,
int? gpuDeviceId = null,
bool fallbackToCpu = false)
=> new OnnxScoringEstimator(CatalogUtils.GetEnvironment(catalog), outputColumnNames, inputColumnNames, modelFile, gpuDeviceId, fallbackToCpu);
Expand Down
8 changes: 4 additions & 4 deletions test/Microsoft.ML.OnnxTransformerTest/OnnxTransformTests.cs
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ void TestSimpleCase()
var xyData = new List<TestDataXY> { new TestDataXY() { A = new float[inputSize] } };
var stringData = new List<TestDataDifferntType> { new TestDataDifferntType() { data_0 = new string[inputSize] } };
var sizeData = new List<TestDataSize> { new TestDataSize() { data_0 = new float[2] } };
var pipe = ML.Transforms.ApplyOnnxModel(modelFile, new[] { "softmaxout_1" }, new[] { "data_0" });
var pipe = ML.Transforms.ApplyOnnxModel(new[] { "softmaxout_1" }, new[] { "data_0" }, modelFile);

var invalidDataWrongNames = ML.Data.LoadFromEnumerable(xyData);
var invalidDataWrongTypes = ML.Data.LoadFromEnumerable(stringData);
Expand Down Expand Up @@ -137,7 +137,7 @@ void TestOldSavingAndLoading(int? gpuDeviceId, bool fallbackToCpu)

var inputNames = new[] { "data_0" };
var outputNames = new[] { "softmaxout_1" };
var est = ML.Transforms.ApplyOnnxModel(modelFile, outputNames, inputNames, gpuDeviceId, fallbackToCpu);
var est = ML.Transforms.ApplyOnnxModel(outputNames, inputNames, modelFile, gpuDeviceId, fallbackToCpu);
var transformer = est.Fit(dataView);
var result = transformer.Transform(dataView);
var resultRoles = new RoleMappedData(result);
Expand Down Expand Up @@ -241,7 +241,7 @@ public void OnnxModelScenario()
}
});

var onnx = ML.Transforms.ApplyOnnxModel(modelFile, "softmaxout_1", "data_0").Fit(dataView).Transform(dataView);
var onnx = ML.Transforms.ApplyOnnxModel("softmaxout_1", "data_0", modelFile).Fit(dataView).Transform(dataView);
var scoreCol = onnx.Schema["softmaxout_1"];

using (var curs = onnx.GetRowCursor(scoreCol))
Expand Down Expand Up @@ -271,7 +271,7 @@ public void OnnxModelMultiInput()
inb = new float[] {1,2,3,4,5}
}
});
var onnx = ML.Transforms.ApplyOnnxModel(modelFile, new[] { "outa", "outb" }, new[] { "ina", "inb" }).Fit(dataView).Transform(dataView);
var onnx = ML.Transforms.ApplyOnnxModel(new[] { "outa", "outb" }, new[] { "ina", "inb" }, modelFile).Fit(dataView).Transform(dataView);

var outaCol = onnx.Schema["outa"];
var outbCol = onnx.Schema["outb"];
Expand Down
4 changes: 2 additions & 2 deletions test/Microsoft.ML.Tests/OnnxConversionTest.cs
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ public void SimpleEndToEndOnnxConversionTest()
// Step 3: Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
string[] inputNames = onnxModel.Graph.Input.Select(valueInfoProto => valueInfoProto.Name).ToArray();
string[] outputNames = onnxModel.Graph.Output.Select(valueInfoProto => valueInfoProto.Name).ToArray();
var onnxEstimator = mlContext.Transforms.ApplyOnnxModel(onnxModelPath, outputNames, inputNames);
var onnxEstimator = mlContext.Transforms.ApplyOnnxModel(outputNames, inputNames, onnxModelPath);
var onnxTransformer = onnxEstimator.Fit(data);
var onnxResult = onnxTransformer.Transform(data);

Expand Down Expand Up @@ -162,7 +162,7 @@ public void KmeansOnnxConversionTest()
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
string[] inputNames = onnxModel.Graph.Input.Select(valueInfoProto => valueInfoProto.Name).ToArray();
string[] outputNames = onnxModel.Graph.Output.Select(valueInfoProto => valueInfoProto.Name).ToArray();
var onnxEstimator = mlContext.Transforms.ApplyOnnxModel(onnxModelPath, outputNames, inputNames);
var onnxEstimator = mlContext.Transforms.ApplyOnnxModel(outputNames, inputNames, onnxModelPath);
var onnxTransformer = onnxEstimator.Fit(data);
var onnxResult = onnxTransformer.Transform(data);
CompareSelectedR4VectorColumns("Score", "Score0", transformedData, onnxResult, 3);
Expand Down

0 comments on commit 9caafb0

Please sign in to comment.