Skip to content

Commit

Permalink
Bump the version to 5.1.0 [skip test]
Browse files Browse the repository at this point in the history
  • Loading branch information
maziyarpanahi committed Aug 24, 2023
1 parent 9febe96 commit 288e69f
Show file tree
Hide file tree
Showing 18 changed files with 150 additions and 135 deletions.
2 changes: 1 addition & 1 deletion CHANGELOG
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
========
5.0.2
5.1.0
========
----------------
New Features & Enhancements
Expand Down
91 changes: 47 additions & 44 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -167,7 +167,7 @@ To use Spark NLP you need the following requirements:

**GPU (optional):**

Spark NLP 5.0.2 is built with ONNX 1.15.1 and TensorFlow 2.7.1 deep learning engines. The minimum following NVIDIA® software are only required for GPU support:
Spark NLP 5.1.0 is built with ONNX 1.15.1 and TensorFlow 2.7.1 deep learning engines. The minimum following NVIDIA® software are only required for GPU support:

- NVIDIA® GPU drivers version 450.80.02 or higher
- CUDA® Toolkit 11.2
Expand All @@ -183,7 +183,7 @@ $ java -version
$ conda create -n sparknlp python=3.7 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==5.0.2 pyspark==3.3.1
$ pip install spark-nlp==5.1.0 pyspark==3.3.1
```

In Python console or Jupyter `Python3` kernel:
Expand Down Expand Up @@ -228,7 +228,7 @@ For more examples, you can visit our dedicated [examples](https://github.com/Joh

## Apache Spark Support

Spark NLP *5.0.2* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x
Spark NLP *5.1.0* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x

| Spark NLP | Apache Spark 2.3.x | Apache Spark 2.4.x | Apache Spark 3.0.x | Apache Spark 3.1.x | Apache Spark 3.2.x | Apache Spark 3.3.x | Apache Spark 3.4.x |
|-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
Expand Down Expand Up @@ -267,7 +267,7 @@ Find out more about `Spark NLP` versions from our [release notes](https://github

## Databricks Support

Spark NLP 5.0.2 has been tested and is compatible with the following runtimes:
Spark NLP 5.1.0 has been tested and is compatible with the following runtimes:

**CPU:**

Expand Down Expand Up @@ -303,6 +303,8 @@ Spark NLP 5.0.2 has been tested and is compatible with the following runtimes:
- 13.1 ML
- 13.2
- 13.2 ML
- 13.3
- 13.3 ML

**GPU:**

Expand All @@ -322,10 +324,11 @@ Spark NLP 5.0.2 has been tested and is compatible with the following runtimes:
- 13.0 ML & GPU
- 13.1 ML & GPU
- 13.2 ML & GPU
- 13.3 ML & GPU

## EMR Support

Spark NLP 5.0.2 has been tested and is compatible with the following EMR releases:
Spark NLP 5.1.0 has been tested and is compatible with the following EMR releases:

- emr-6.2.0
- emr-6.3.0
Expand Down Expand Up @@ -369,11 +372,11 @@ Spark NLP supports all major releases of Apache Spark 3.0.x, Apache Spark 3.1.x,
```sh
# CPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.2
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.2
pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.2
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
```

The `spark-nlp` has been published to
Expand All @@ -382,11 +385,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# GPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.0.2
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.0

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.0.2
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.0

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.0.2
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.0

```

Expand All @@ -396,11 +399,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# AArch64

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.0.2
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.0

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.0.2
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.0

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.0.2
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.0

```

Expand All @@ -410,11 +413,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# M1/M2 (Apple Silicon)

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.0.2
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.0

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.0.2
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.0

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.0.2
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.0

```

Expand All @@ -428,7 +431,7 @@ set in your SparkSession:
spark-shell \
--driver-memory 16g \
--conf spark.kryoserializer.buffer.max=2000M \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.2
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
```

## Scala
Expand All @@ -446,7 +449,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp_2.12</artifactId>
<version>5.0.2</version>
<version>5.1.0</version>
</dependency>
```

Expand All @@ -457,7 +460,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-gpu_2.12</artifactId>
<version>5.0.2</version>
<version>5.1.0</version>
</dependency>
```

Expand All @@ -468,7 +471,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-aarch64_2.12</artifactId>
<version>5.0.2</version>
<version>5.1.0</version>
</dependency>
```

Expand All @@ -479,7 +482,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-silicon_2.12</artifactId>
<version>5.0.2</version>
<version>5.1.0</version>
</dependency>
```

Expand All @@ -489,28 +492,28 @@ coordinates:

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.0.2"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.1.0"
```

**spark-nlp-gpu:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.0.2"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.1.0"
```

**spark-nlp-aarch64:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.0.2"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.1.0"
```

**spark-nlp-silicon:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.0.2"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.1.0"
```

Maven
Expand All @@ -532,7 +535,7 @@ If you installed pyspark through pip/conda, you can install `spark-nlp` through
Pip:

```bash
pip install spark-nlp==5.0.2
pip install spark-nlp==5.1.0
```

Conda:
Expand Down Expand Up @@ -561,7 +564,7 @@ spark = SparkSession.builder
.config("spark.driver.memory", "16G")
.config("spark.driver.maxResultSize", "0")
.config("spark.kryoserializer.buffer.max", "2000M")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.2")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0")
.getOrCreate()
```

Expand Down Expand Up @@ -632,7 +635,7 @@ Use either one of the following options
- Add the following Maven Coordinates to the interpreter's library list

```bash
com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.2
com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
```

- Add a path to pre-built jar from [here](#compiled-jars) in the interpreter's library list making sure the jar is
Expand All @@ -643,7 +646,7 @@ com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.2
Apart from the previous step, install the python module through pip

```bash
pip install spark-nlp==5.0.2
pip install spark-nlp==5.1.0
```

Or you can install `spark-nlp` from inside Zeppelin by using Conda:
Expand Down Expand Up @@ -671,7 +674,7 @@ launch the Jupyter from the same Python environment:
$ conda create -n sparknlp python=3.8 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==5.0.2 pyspark==3.3.1 jupyter
$ pip install spark-nlp==5.1.0 pyspark==3.3.1 jupyter
$ jupyter notebook
```

Expand All @@ -688,7 +691,7 @@ export PYSPARK_PYTHON=python3
export PYSPARK_DRIVER_PYTHON=jupyter
export PYSPARK_DRIVER_PYTHON_OPTS=notebook

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.2
pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
```

Alternatively, you can mix in using `--jars` option for pyspark + `pip install spark-nlp`
Expand All @@ -715,7 +718,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi
# -s is for spark-nlp
# -g will enable upgrading libcudnn8 to 8.1.0 on Google Colab for GPU usage
# by default they are set to the latest
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.0.2
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.1.0
```

[Spark NLP quick start on Google Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_google_colab.ipynb)
Expand All @@ -738,7 +741,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi
# -s is for spark-nlp
# -g will enable upgrading libcudnn8 to 8.1.0 on Kaggle for GPU usage
# by default they are set to the latest
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.0.2
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.1.0
```

[Spark NLP quick start on Kaggle Kernel](https://www.kaggle.com/mozzie/spark-nlp-named-entity-recognition) is a live
Expand All @@ -757,9 +760,9 @@ demo on Kaggle Kernel that performs named entity recognitions by using Spark NLP

3. In `Libraries` tab inside your cluster you need to follow these steps:

3.1. Install New -> PyPI -> `spark-nlp==5.0.2` -> Install
3.1. Install New -> PyPI -> `spark-nlp==5.1.0` -> Install

3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.2` -> Install
3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0` -> Install

4. Now you can attach your notebook to the cluster and use Spark NLP!

Expand Down Expand Up @@ -810,7 +813,7 @@ A sample of your software configuration in JSON on S3 (must be public access):
"spark.kryoserializer.buffer.max": "2000M",
"spark.serializer": "org.apache.spark.serializer.KryoSerializer",
"spark.driver.maxResultSize": "0",
"spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.2"
"spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0"
}
}]
```
Expand All @@ -819,7 +822,7 @@ A sample of AWS CLI to launch EMR cluster:
```.sh
aws emr create-cluster \
--name "Spark NLP 5.0.2" \
--name "Spark NLP 5.1.0" \
--release-label emr-6.2.0 \
--applications Name=Hadoop Name=Spark Name=Hive \
--instance-type m4.4xlarge \
Expand Down Expand Up @@ -883,7 +886,7 @@ gcloud dataproc clusters create ${CLUSTER_NAME} \
--enable-component-gateway \
--metadata 'PIP_PACKAGES=spark-nlp spark-nlp-display google-cloud-bigquery google-cloud-storage' \
--initialization-actions gs://goog-dataproc-initialization-actions-${REGION}/python/pip-install.sh \
--properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.2
--properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
```
2. On an existing one, you need to install spark-nlp and spark-nlp-display packages from PyPI.
Expand Down Expand Up @@ -922,7 +925,7 @@ spark = SparkSession.builder
.config("spark.kryoserializer.buffer.max", "2000m")
.config("spark.jsl.settings.pretrained.cache_folder", "sample_data/pretrained")
.config("spark.jsl.settings.storage.cluster_tmp_dir", "sample_data/storage")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.2")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0")
.getOrCreate()
```
Expand All @@ -936,7 +939,7 @@ spark-shell \
--conf spark.kryoserializer.buffer.max=2000M \
--conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \
--conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.2
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
```
**pyspark:**
Expand All @@ -949,7 +952,7 @@ pyspark \
--conf spark.kryoserializer.buffer.max=2000M \
--conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \
--conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.2
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
```
**Databricks:**
Expand Down Expand Up @@ -1221,7 +1224,7 @@ spark = SparkSession.builder
.config("spark.driver.memory", "16G")
.config("spark.driver.maxResultSize", "0")
.config("spark.kryoserializer.buffer.max", "2000M")
.config("spark.jars", "/tmp/spark-nlp-assembly-5.0.2.jar")
.config("spark.jars", "/tmp/spark-nlp-assembly-5.1.0.jar")
.getOrCreate()
```
Expand All @@ -1230,7 +1233,7 @@ spark = SparkSession.builder
version (3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x)
- If you are local, you can load the Fat JAR from your local FileSystem, however, if you are in a cluster setup you need
to put the Fat JAR on a distributed FileSystem such as HDFS, DBFS, S3, etc. (
i.e., `hdfs:///tmp/spark-nlp-assembly-5.0.2.jar`)
i.e., `hdfs:///tmp/spark-nlp-assembly-5.1.0.jar`)
Example of using pretrained Models and Pipelines in offline:
Expand Down
2 changes: 1 addition & 1 deletion build.sbt
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ name := getPackageName(is_silicon, is_gpu, is_aarch64)

organization := "com.johnsnowlabs.nlp"

version := "5.0.2"
version := "5.1.0"

(ThisBuild / scalaVersion) := scalaVer

Expand Down
2 changes: 1 addition & 1 deletion docs/_layouts/landing.html
Original file line number Diff line number Diff line change
Expand Up @@ -201,7 +201,7 @@ <h3 class="grey h3_title">{{ _section.title }}</h3>
<div class="highlight-box">
{% highlight bash %}
# Using PyPI
$ pip install spark-nlp==5.0.2
$ pip install spark-nlp==5.1.0

# Using Anaconda/Conda
$ conda install -c johnsnowlabs spark-nlp
Expand Down
2 changes: 1 addition & 1 deletion docs/en/concepts.md
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ $ java -version
$ conda create -n sparknlp python=3.7 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==5.0.2 pyspark==3.3.1 jupyter
$ pip install spark-nlp==5.1.0 pyspark==3.3.1 jupyter
$ jupyter notebook
```

Expand Down
Loading

0 comments on commit 288e69f

Please sign in to comment.