Skip to content

Commit

Permalink
Update version to 5.0.0 [skip test]
Browse files Browse the repository at this point in the history
  • Loading branch information
maziyarpanahi committed Jun 30, 2023
1 parent b4b4ab4 commit 5ade294
Show file tree
Hide file tree
Showing 18 changed files with 135 additions and 135 deletions.
90 changes: 45 additions & 45 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -148,7 +148,7 @@ documentation and examples
- Automatic Speech Recognition (Wav2Vec2)
- Automatic Speech Recognition (HuBERT)
- Named entity recognition (Deep learning)
- Easy TensorFlow integration
- Easy ONNX and TensorFlow integrations
- GPU Support
- Full integration with Spark ML functions
- +12000 pre-trained models in +200 languages!
Expand All @@ -165,7 +165,7 @@ To use Spark NLP you need the following requirements:

**GPU (optional):**

Spark NLP 5.0.0-rc1 is built with TensorFlow 2.7.1 and the following NVIDIA® software are only required for GPU support:
Spark NLP 5.0.0 is built with ONNX 1.15.1 and TensorFlow 2.7.1 deep learning engines. The minimum following NVIDIA® software are only required for GPU support:

- NVIDIA® GPU drivers version 450.80.02 or higher
- CUDA® Toolkit 11.2
Expand All @@ -181,7 +181,7 @@ $ java -version
$ conda create -n sparknlp python=3.7 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==5.0.0-rc1 pyspark==3.3.1
$ pip install spark-nlp==5.0.0 pyspark==3.3.1
```

In Python console or Jupyter `Python3` kernel:
Expand Down Expand Up @@ -226,7 +226,7 @@ For more examples, you can visit our dedicated [examples](https://github.com/Joh

## Apache Spark Support

Spark NLP *5.0.0-rc1* has been built on top of Apache Spark 3.2 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x
Spark NLP *5.0.0* has been built on top of Apache Spark 3.2 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x

| Spark NLP | Apache Spark 2.3.x | Apache Spark 2.4.x | Apache Spark 3.0.x | Apache Spark 3.1.x | Apache Spark 3.2.x | Apache Spark 3.3.x | Apache Spark 3.4.x |
|-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
Expand Down Expand Up @@ -265,7 +265,7 @@ Find out more about `Spark NLP` versions from our [release notes](https://github

## Databricks Support

Spark NLP 5.0.0-rc1 has been tested and is compatible with the following runtimes:
Spark NLP 5.0.0 has been tested and is compatible with the following runtimes:

**CPU:**

Expand Down Expand Up @@ -322,7 +322,7 @@ runtimes supporting CUDA 11 are 9.x and above as listed under GPU.

## EMR Support

Spark NLP 5.0.0-rc1 has been tested and is compatible with the following EMR releases:
Spark NLP 5.0.0 has been tested and is compatible with the following EMR releases:

- emr-6.2.0
- emr-6.3.0
Expand Down Expand Up @@ -365,11 +365,11 @@ Spark NLP supports all major releases of Apache Spark 3.0.x, Apache Spark 3.1.x,
```sh
# CPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0-rc1
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0-rc1
pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0-rc1
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0
```

The `spark-nlp` has been published to
Expand All @@ -378,11 +378,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# GPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.0.0-rc1
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.0.0

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.0.0-rc1
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.0.0

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.0.0-rc1
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.0.0

```

Expand All @@ -392,11 +392,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# AArch64

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.0.0-rc1
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.0.0

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.0.0-rc1
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.0.0

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.0.0-rc1
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.0.0

```

Expand All @@ -406,11 +406,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# M1/M2 (Apple Silicon)

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.0.0-rc1
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.0.0

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.0.0-rc1
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.0.0

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.0.0-rc1
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.0.0

```

Expand All @@ -424,7 +424,7 @@ set in your SparkSession:
spark-shell \
--driver-memory 16g \
--conf spark.kryoserializer.buffer.max=2000M \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0-rc1
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0
```

## Scala
Expand All @@ -442,7 +442,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp_2.12</artifactId>
<version>5.0.0-rc1</version>
<version>5.0.0</version>
</dependency>
```

Expand All @@ -453,7 +453,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-gpu_2.12</artifactId>
<version>5.0.0-rc1</version>
<version>5.0.0</version>
</dependency>
```

Expand All @@ -464,7 +464,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-aarch64_2.12</artifactId>
<version>5.0.0-rc1</version>
<version>5.0.0</version>
</dependency>
```

Expand All @@ -475,7 +475,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-silicon_2.12</artifactId>
<version>5.0.0-rc1</version>
<version>5.0.0</version>
</dependency>
```

Expand All @@ -485,28 +485,28 @@ coordinates:

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.0.0-rc1"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.0.0"
```

**spark-nlp-gpu:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.0.0-rc1"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.0.0"
```

**spark-nlp-aarch64:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.0.0-rc1"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.0.0"
```

**spark-nlp-silicon:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.0.0-rc1"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.0.0"
```

Maven
Expand All @@ -528,7 +528,7 @@ If you installed pyspark through pip/conda, you can install `spark-nlp` through
Pip:

```bash
pip install spark-nlp==5.0.0-rc1
pip install spark-nlp==5.0.0
```

Conda:
Expand Down Expand Up @@ -557,7 +557,7 @@ spark = SparkSession.builder
.config("spark.driver.memory", "16G")
.config("spark.driver.maxResultSize", "0")
.config("spark.kryoserializer.buffer.max", "2000M")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0-rc1")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0")
.getOrCreate()
```

Expand Down Expand Up @@ -628,7 +628,7 @@ Use either one of the following options
- Add the following Maven Coordinates to the interpreter's library list

```bash
com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0-rc1
com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0
```

- Add a path to pre-built jar from [here](#compiled-jars) in the interpreter's library list making sure the jar is
Expand All @@ -639,7 +639,7 @@ com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0-rc1
Apart from the previous step, install the python module through pip

```bash
pip install spark-nlp==5.0.0-rc1
pip install spark-nlp==5.0.0
```

Or you can install `spark-nlp` from inside Zeppelin by using Conda:
Expand Down Expand Up @@ -667,7 +667,7 @@ launch the Jupyter from the same Python environment:
$ conda create -n sparknlp python=3.8 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==5.0.0-rc1 pyspark==3.3.1 jupyter
$ pip install spark-nlp==5.0.0 pyspark==3.3.1 jupyter
$ jupyter notebook
```

Expand All @@ -684,7 +684,7 @@ export PYSPARK_PYTHON=python3
export PYSPARK_DRIVER_PYTHON=jupyter
export PYSPARK_DRIVER_PYTHON_OPTS=notebook

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0-rc1
pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0
```

Alternatively, you can mix in using `--jars` option for pyspark + `pip install spark-nlp`
Expand All @@ -711,7 +711,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi
# -s is for spark-nlp
# -g will enable upgrading libcudnn8 to 8.1.0 on Google Colab for GPU usage
# by default they are set to the latest
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.0.0-rc1
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.0.0
```

[Spark NLP quick start on Google Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_google_colab.ipynb)
Expand All @@ -734,7 +734,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi
# -s is for spark-nlp
# -g will enable upgrading libcudnn8 to 8.1.0 on Kaggle for GPU usage
# by default they are set to the latest
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.0.0-rc1
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.0.0
```

[Spark NLP quick start on Kaggle Kernel](https://www.kaggle.com/mozzie/spark-nlp-named-entity-recognition) is a live
Expand All @@ -753,9 +753,9 @@ demo on Kaggle Kernel that performs named entity recognitions by using Spark NLP

3. In `Libraries` tab inside your cluster you need to follow these steps:

3.1. Install New -> PyPI -> `spark-nlp==5.0.0-rc1` -> Install
3.1. Install New -> PyPI -> `spark-nlp==5.0.0` -> Install

3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0-rc1` -> Install
3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0` -> Install

4. Now you can attach your notebook to the cluster and use Spark NLP!

Expand Down Expand Up @@ -806,7 +806,7 @@ A sample of your software configuration in JSON on S3 (must be public access):
"spark.kryoserializer.buffer.max": "2000M",
"spark.serializer": "org.apache.spark.serializer.KryoSerializer",
"spark.driver.maxResultSize": "0",
"spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0-rc1"
"spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0"
}
}]
```
Expand All @@ -815,7 +815,7 @@ A sample of AWS CLI to launch EMR cluster:
```.sh
aws emr create-cluster \
--name "Spark NLP 5.0.0-rc1" \
--name "Spark NLP 5.0.0" \
--release-label emr-6.2.0 \
--applications Name=Hadoop Name=Spark Name=Hive \
--instance-type m4.4xlarge \
Expand Down Expand Up @@ -879,7 +879,7 @@ gcloud dataproc clusters create ${CLUSTER_NAME} \
--enable-component-gateway \
--metadata 'PIP_PACKAGES=spark-nlp spark-nlp-display google-cloud-bigquery google-cloud-storage' \
--initialization-actions gs://goog-dataproc-initialization-actions-${REGION}/python/pip-install.sh \
--properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0-rc1
--properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0
```
2. On an existing one, you need to install spark-nlp and spark-nlp-display packages from PyPI.
Expand Down Expand Up @@ -918,7 +918,7 @@ spark = SparkSession.builder
.config("spark.kryoserializer.buffer.max", "2000m")
.config("spark.jsl.settings.pretrained.cache_folder", "sample_data/pretrained")
.config("spark.jsl.settings.storage.cluster_tmp_dir", "sample_data/storage")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0-rc1")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0")
.getOrCreate()
```
Expand All @@ -932,7 +932,7 @@ spark-shell \
--conf spark.kryoserializer.buffer.max=2000M \
--conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \
--conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0-rc1
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0
```
**pyspark:**
Expand All @@ -945,7 +945,7 @@ pyspark \
--conf spark.kryoserializer.buffer.max=2000M \
--conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \
--conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0-rc1
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.0.0
```
**Databricks:**
Expand Down Expand Up @@ -1217,7 +1217,7 @@ spark = SparkSession.builder
.config("spark.driver.memory", "16G")
.config("spark.driver.maxResultSize", "0")
.config("spark.kryoserializer.buffer.max", "2000M")
.config("spark.jars", "/tmp/spark-nlp-assembly-5.0.0-rc1.jar")
.config("spark.jars", "/tmp/spark-nlp-assembly-5.0.0.jar")
.getOrCreate()
```
Expand All @@ -1226,7 +1226,7 @@ spark = SparkSession.builder
version (3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x)
- If you are local, you can load the Fat JAR from your local FileSystem, however, if you are in a cluster setup you need
to put the Fat JAR on a distributed FileSystem such as HDFS, DBFS, S3, etc. (
i.e., `hdfs:///tmp/spark-nlp-assembly-5.0.0-rc1.jar`)
i.e., `hdfs:///tmp/spark-nlp-assembly-5.0.0.jar`)
Example of using pretrained Models and Pipelines in offline:
Expand Down
2 changes: 1 addition & 1 deletion build.sbt
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ name := getPackageName(is_silicon, is_gpu, is_aarch64)

organization := "com.johnsnowlabs.nlp"

version := "5.0.0-rc1"
version := "5.0.0"

(ThisBuild / scalaVersion) := scalaVer

Expand Down
2 changes: 1 addition & 1 deletion docs/_layouts/landing.html
Original file line number Diff line number Diff line change
Expand Up @@ -332,7 +332,7 @@ <h4 class="blue h4_title">NLP Features</h4>
<li>Microsoft Swin Transformer <strong>Image Classification</strong></li>
<li>Facebook ConvNext <strong>Image Classification</strong></li>
<li>Automatic Speech Recognition <strong>(Wav2Vec2 & HuBERT)</strong></li>
<li>Easy <strong>TensorFlow</strong> integration</li>
<li>Easy <strong>ONNX</strong> and <strong>TensorFlow</strong> integrations</li>
<li><strong>GPU</strong> Support</li>
<li>Full integration with <strong>Spark ML</strong> functions</li>
<li><strong>12000+</strong> pre-trained <strong>models </strong> in <strong>200+ languages! </strong>
Expand Down
2 changes: 1 addition & 1 deletion docs/en/concepts.md
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ $ java -version
$ conda create -n sparknlp python=3.7 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==5.0.0-rc1 pyspark==3.3.1 jupyter
$ pip install spark-nlp==5.0.0 pyspark==3.3.1 jupyter
$ jupyter notebook
```

Expand Down
4 changes: 2 additions & 2 deletions docs/en/examples.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ $ java -version
# should be Java 8 (Oracle or OpenJDK)
$ conda create -n sparknlp python=3.7 -y
$ conda activate sparknlp
$ pip install spark-nlp==5.0.0-rc1 pyspark==3.3.1
$ pip install spark-nlp==5.0.0 pyspark==3.3.1
```

## Google Colab Notebook
Expand All @@ -36,7 +36,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi
# -p is for pyspark
# -s is for spark-nlp
# by default they are set to the latest
!bash colab.sh -p 3.2.3 -s 5.0.0-rc1
!bash colab.sh -p 3.2.3 -s 5.0.0
```

[Spark NLP quick start on Google Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_google_colab.ipynb) is a live demo on Google Colab that performs named entity recognitions and sentiment analysis by using Spark NLP pretrained pipelines.
Expand Down
Loading

0 comments on commit 5ade294

Please sign in to comment.