Skip to content

Commit

Permalink
Add scaled diagonally dominant matrix constraint. (RobotLocomotion#9472)
Browse files Browse the repository at this point in the history
Add scaled diagonally dominant matrix constraint.
  • Loading branch information
hongkai-dai authored Oct 9, 2018
1 parent cd2fa2e commit d891ecd
Show file tree
Hide file tree
Showing 4 changed files with 212 additions and 3 deletions.
10 changes: 10 additions & 0 deletions solvers/BUILD.bazel
Original file line number Diff line number Diff line change
Expand Up @@ -1354,6 +1354,16 @@ drake_cc_googletest(
],
)

drake_cc_googletest(
name = "scaled_diagonally_dominant_matrix_test",
tags = gurobi_test_tags() + mosek_test_tags(),
deps = [
":mathematical_program",
"//common/test_utilities:eigen_matrix_compare",
"//common/test_utilities:symbolic_test_util",
],
)

# The extra_srcs are required here because add_lint_tests() doesn't understand
# how to extract labels from select() functions yet.
add_lint_tests(cpplint_extra_srcs = [
Expand Down
34 changes: 34 additions & 0 deletions solvers/mathematical_program.cc
Original file line number Diff line number Diff line change
Expand Up @@ -796,6 +796,40 @@ MathematicalProgram::AddPositiveDiagonallyDominantMatrixConstraint(
return Y;
}

std::vector<std::vector<Matrix2<symbolic::Expression>>>
MathematicalProgram::AddScaledDiagonallyDominantMatrixConstraint(
const Eigen::Ref<const MatrixX<symbolic::Expression>>& X) {
const int n = X.rows();
DRAKE_DEMAND(X.cols() == n);
std::vector<std::vector<Matrix2<symbolic::Expression>>> M(n);
for (int i = 0; i < n; ++i) {
M[i].resize(n);
for (int j = i + 1; j < n; ++j) {
// Since M[i][j](0, 1) = X(i, j), we only need to declare new variables
// for the diagonal entries of M[i][j].
auto M_ij_diagonal = NewContinuousVariables<2>(
"sdd_slack_M[" + std::to_string(i) + "][" + std::to_string(j) + "]");
M[i][j](0, 0) = M_ij_diagonal(0);
M[i][j](1, 1) = M_ij_diagonal(1);
M[i][j](0, 1) = (X(i, j) + X(j, i)) / 2;
M[i][j](1, 0) = M[i][j](0, 1);
AddRotatedLorentzConeConstraint(Vector3<symbolic::Expression>(
M[i][j](0, 0), M[i][j](1, 1), M[i][j](0, 1)));
}
}
for (int i = 0; i < n; ++i) {
symbolic::Expression diagonal_sum = 0;
for (int j = 0; j < i; ++j) {
diagonal_sum += M[j][i](1, 1);
}
for (int j = i + 1; j < n; ++j) {
diagonal_sum += M[i][j](0, 0);
}
AddLinearEqualityConstraint(X(i, i) - diagonal_sum, 0);
}
return M;
}

// Note that FindDecisionVariableIndex is implemented in
// mathematical_program_api.cc instead of this file.

Expand Down
40 changes: 37 additions & 3 deletions solvers/mathematical_program.h
Original file line number Diff line number Diff line change
Expand Up @@ -2052,16 +2052,50 @@ class MathematicalProgram {
* Internally we will create a matrix Y as slack variables, such that Y(i, j)
* represents the absolute value |X(i, j)| ∀ j ≠ i. The diagonal entries
* Y(i, i) = X(i, i)
* @param X The symmetric matrix X in the documentation above. We
* will assume that @p X is already symmetric. It is the user's responsibility
* to guarantee the symmetry.
* The users can refer to "DSOS and SDSOS Optimization: More Tractable
* Alternatives to Sum of Squares and Semidefinite Optimization" by Amir Ali
* Ahmadi and Anirudha Majumdar, with arXiv link
* https://arxiv.org/abs/1706.02586
* @param X The matrix X. We will use 0.5(X+Xᵀ) as the "symmetric version" of
* X.
* @return Y The slack variable. Y(i, j) represents |X(i, j)| ∀ j ≠ i, with
* the constraint Y(i, j) >= X(i, j) and Y(i, j) >= -X(i, j). Y is a symmetric
* matrix. The diagonal entries Y(i, i) = X(i, i)
*/
MatrixX<symbolic::Expression> AddPositiveDiagonallyDominantMatrixConstraint(
const Eigen::Ref<const MatrixX<symbolic::Expression>>& X);

/**
* Adds the constraint that a symmetric matrix is scaled diagonally dominant
* (sdd). A matrix X is sdd if there exists a diagonal matrix D, such that
* the product DXD is diagonally dominant with non-negative diagonal entries,
* namely
* d(i)X(i, i) ≥ ∑ⱼ |d(j)X(i, j)| ∀ j ≠ i
* where d(i) = D(i, i).
* X being sdd is equivalent to the existence of symmetric matrices Mⁱʲ∈ ℝⁿˣⁿ
* i < j, such that all entries in Mⁱʲ are 0, except Mⁱʲ(i, i), Mⁱʲ(i, j),
* Mⁱʲ(j, j). (Mⁱʲ(i, i), Mⁱʲ(j, j), Mⁱʲ(i, j)) is in the rotated
* Lorentz cone, and X = ∑ᵢⱼ Mⁱʲ
* The users can refer to "DSOS and SDSOS Optimization: More Tractable
* Alternatives to Sum of Squares and Semidefinite Optimization" by Amir Ali
* Ahmadi and Anirudha Majumdar, with arXiv link
* https://arxiv.org/abs/1706.02586.
* @param X The matrix X. We will use 0.5(X+Xᵀ) as the "symmetric version" of
* X.
* @pre X(i, j) should be a linear expression of decision variables.
* @return M A vector of vectors of 2 x 2 symmetric matrices M. For i < j,
* M[i][j] is
* <pre>
* [Mⁱʲ(i, i), Mⁱʲ(i, j)]
* [Mⁱʲ(i, j), Mⁱʲ(j, j)].
* </pre>
* Note that M[i][j](0, 1) = Mⁱʲ(i, j) = (X(i, j) + X(j, i)) / 2
* for i >= j, M[i][j] is the zero matrix.
*/
std::vector<std::vector<Matrix2<symbolic::Expression>>>
AddScaledDiagonallyDominantMatrixConstraint(
const Eigen::Ref<const MatrixX<symbolic::Expression>>& X);

/**
* Adds constraints that a given polynomial @p p is a sums-of-squares (SOS),
* that is, @p p can be decomposed into `mᵀQm`, where m is the @p
Expand Down
131 changes: 131 additions & 0 deletions solvers/test/scaled_diagonally_dominant_matrix_test.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
#include <limits>

#include <gtest/gtest.h>

#include "drake/common/test_utilities/eigen_matrix_compare.h"
#include "drake/common/test_utilities/symbolic_test_util.h"
#include "drake/solvers/mathematical_program.h"

using drake::symbolic::test::ExprEqual;

namespace drake {
namespace solvers {
GTEST_TEST(ScaledDiagonallyDominantMatrixTest, AddConstraint) {
MathematicalProgram prog;
auto X = prog.NewSymmetricContinuousVariables<4>();

auto M = prog.AddScaledDiagonallyDominantMatrixConstraint(
X.cast<symbolic::Expression>());
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
if (i >= j) {
for (int m = 0; m < 2; ++m) {
for (int n = 0; n < 2; ++n) {
EXPECT_EQ(M[i][j](m, n), 0);
}
}
} else {
EXPECT_PRED2(ExprEqual, M[i][j](0, 1).Expand(),
symbolic::Expression(X(i, j)));
}
}
}
}

void CheckSDDMatrix(const Eigen::Ref<const Eigen::MatrixXd>& X_val,
bool is_sdd) {
// Test if a sdd matrix satisfies the constraint.
const int nx = X_val.rows();
DRAKE_DEMAND(X_val.cols() == nx);
MathematicalProgram prog;
auto X = prog.NewSymmetricContinuousVariables(nx);
auto M = prog.AddScaledDiagonallyDominantMatrixConstraint(
X.cast<symbolic::Expression>());

for (int i = 0; i < nx; ++i) {
prog.AddBoundingBoxConstraint(X_val.col(i), X_val.col(i), X.col(i));
}

const auto result = prog.Solve();
if (is_sdd) {
EXPECT_EQ(result, SolutionResult::kSolutionFound);
} else {
EXPECT_TRUE(result == SolutionResult::kInfeasibleConstraints ||
result == SolutionResult::kInfeasible_Or_Unbounded);
}
}

bool IsMatrixSDD(const Eigen::Ref<Eigen::MatrixXd>& X) {
// A matrix X is scaled diagonally dominant, if there exists a positive vector
// d, such that the matrix A defined as A(i, j) = d(j) * X(i, j) is diagonally
// dominant with positive diagonals.
// This is explained as Remark 6 of "DSOS and SDSOS optimization: more
// tractable alternatives to sum of squares and semidefinite optimization" by
// Amir Ali Ahmadi and Anirudha Majumdar, with arXiv link
// https://arxiv.org/abs/1706.02586.
const int nx = X.rows();
MathematicalProgram prog;
auto d = prog.NewContinuousVariables(nx);
MatrixX<symbolic::Expression> A(nx, nx);
for (int i = 0; i < nx; ++i) {
for (int j = 0; j < nx; ++j) {
A(i, j) = d(j) * X(i, j);
}
}
prog.AddPositiveDiagonallyDominantMatrixConstraint(A);
prog.AddBoundingBoxConstraint(1, std::numeric_limits<double>::infinity(), d);

const auto result = prog.Solve();
return result == solvers::SolutionResult::kSolutionFound;
}

GTEST_TEST(ScaledDiagonallyDominantMatrixTest, TestSDDMatrix) {
Eigen::Matrix4d dd_X;
// A diagonally dominant matrix.
// clang-format off
dd_X << 1, -0.2, 0.3, -0.45,
-0.2, 2, 0.5, 1,
0.3, 0.5, 3, 2,
-0.45, 1, 2, 4;
// clang-format on
CheckSDDMatrix(dd_X, true);

Eigen::Matrix4d D = Eigen::Vector4d(1, 2, 3, 4).asDiagonal();
Eigen::Matrix4d sdd_X = D * dd_X * D;
CheckSDDMatrix(sdd_X, true);

D = Eigen::Vector4d(0.2, -1, -0.5, 1.2).asDiagonal();
sdd_X = D * dd_X * D;
CheckSDDMatrix(sdd_X, true);

// not_dd_X is not diagonally dominant (dd), but is scaled diagonally
// dominant.
Eigen::Matrix4d not_dd_X;
not_dd_X << 1, -0.2, 0.3, -0.55, -0.2, 2, 0.5, 1, 0.3, 0.5, 3, 2, -0.55, 1, 2,
4;
DRAKE_DEMAND(IsMatrixSDD(not_dd_X));
CheckSDDMatrix(not_dd_X, true);
}

GTEST_TEST(ScaledDiagonallyDominantMatrixTest, TestNotSDDMatrix) {
Eigen::Matrix4d not_sdd_X;
// Not a diagonally dominant matrix.
// clang-format off
not_sdd_X << 1, -0.2, 0.3, -1.55,
-0.2, 2, 0.5, 1,
0.3, 0.5, 3, 2,
-1.55, 1, 2, 4;
// clang-format on
DRAKE_DEMAND(!IsMatrixSDD(not_sdd_X));
CheckSDDMatrix(not_sdd_X, false);

Eigen::Matrix4d D = Eigen::Vector4d(1, 2, 3, 4).asDiagonal();
not_sdd_X = D * not_sdd_X * D;
CheckSDDMatrix(not_sdd_X, false);

D = Eigen::Vector4d(0.2, -1, -0.5, 1.2).asDiagonal();
not_sdd_X = D * not_sdd_X * D;
CheckSDDMatrix(not_sdd_X, false);
}
} // namespace solvers
} // namespace drake

0 comments on commit d891ecd

Please sign in to comment.