from neuralintents.assistants import BasicAssistant
assistant = BasicAssistant('intents.json')
assistant.fit_model(epochs=50)
assistant.save_model()
done = False
while not done:
message = input("Enter a message: ")
if message == "STOP":
done = True
else:
print(assistant.process_input(message))
from neuralintents.assistants import BasicAssistant
stocks = ['AAPL', 'META', 'TSLA', 'NVDA']
def print_stocks():
print(f'Stocks: {stocks}')
assistant = BasicAssistant('intents.json', method_mappings={
"stocks": print_stocks,
"goodbye": lambda: exit(0)
})
assistant.fit_model(epochs=50)
assistant.save_model()
done = False
while not done:
message = input("Enter a message: ")
if message == "STOP":
done = True
else:
print(assistant.process_input(message))
{
"intents": [
{
"tag": "greeting",
"patterns": ["Hi", "How are you", "Is anyone there?", "Hello", "Good day", "Whats up", "Hey", "greetings"],
"responses": ["Hello!", "Good to see you again!", "Hi there, how can I help?"],
"context_set": ""
},
{
"tag": "goodbye",
"patterns": ["cya", "See you later", "Goodbye", "I am Leaving", "Have a Good day", "bye", "cao", "see ya"],
"responses": ["Sad to see you go :(", "Talk to you later", "Goodbye!"],
"context_set": ""
},
{
"tag": "programming",
"patterns": ["What is programming?", "What is coding?", "Tell me about programming", "Tell me about coding", "What is software development?"],
"responses": ["Programming, coding or software development, means writing computer code to automate tasks."],
"context_set": ""
},
{
"tag": "resource",
"patterns": ["Where can I learn to code?", "Best way to learn to code", "How can I learn programming", "Good programming resources", "Can you recommend good coding resources?"],
"responses": ["Check out the NeuralNine YouTube channel and The Python Bible series (7 in 1)."],
"context_set": ""
},
{
"tag": "stocks",
"patterns": ["What are my stocks?", "Which stocks do I own?", "Show my stock portfolio"],
"responses": ["Here are your stocks!"],
"context_set": ""
}
]
}
Once you've trained a model, you can load it to avoid training every time.
from neuralintents import GenericAssistant
assistant = GenericAssistant('intents.json', model_name="test_model")
assistant.load_model() # Load the previously trained model
done = False
while not done:
message = input("Enter a message: ")
if message == "STOP":
done = True
else:
print(assistant.request(message))