Skip to content

LBL-EESA/fastkde

Folders and files

NameName
Last commit message
Last commit date

Latest commit

fe626ab · Oct 23, 2024
Sep 28, 2024
Sep 28, 2024
Oct 23, 2024
Mar 27, 2024
Sep 28, 2024
Oct 10, 2023
Sep 28, 2015
Apr 19, 2016
Sep 28, 2024
Sep 28, 2024
Oct 10, 2023
Sep 10, 2024
Nov 5, 2023
Oct 10, 2023
Nov 5, 2023

Repository files navigation

PyPI version GitHub Workflow Status (with event) Open In Colab

fastKDE

Software Overview

fastKDE calculates a kernel density estimate of arbitrarily dimensioned data; it does so rapidly and robustly using recently developed KDE techniques. It does so with statistical skill that is as good as state-of-the-science 'R' KDE packages, and it does so 10,000 times faster for bivariate data (even better improvements for higher dimensionality).

Please cite the following papers when using this method:

  • O’Brien, T. A., Kashinath, K., Cavanaugh, N. R., Collins, W. D. & O’Brien, J. P. A fast and objective multidimensional kernel density estimation method: fastKDE. Comput. Stat. Data Anal. 101, 148–160 (2016). http://dx.doi.org/10.1016/j.csda.2016.02.014
  • O’Brien, T. A., Collins, W. D., Rauscher, S. A. & Ringler, T. D. Reducing the computational cost of the ECF using a nuFFT: A fast and objective probability density estimation method. Comput. Stat. Data Anal. 79, 222–234 (2014). http://dx.doi.org/10.1016/j.csda.2014.06.002

Example usage:

For a standard PDF

""" Demonstrate the first README example. """
import numpy as np
import fastkde
import matplotlib.pyplot as plt

#Generate two random variables dataset (representing 100,000 pairs of datapoints)
N = int(1e5)
x = 50*np.random.normal(size=N) + 0.1
y = 0.01*np.random.normal(size=N) - 300

#Do the self-consistent density estimate
PDF = fastkde.pdf(x, y, var_names = ['x', 'y'])

PDF.plot();

For a conditional PDF

The following code generates samples from a non-trivial joint distribution

#***************************
# Generate random samples
#***************************
# Stochastically sample from the function underlyingFunction() (a sigmoid):
# sample the absicissa values from a gamma distribution
# relate the ordinate values to the sample absicissa values and add
# noise from a normal distribution

#Set the number of samples
numSamples = int(1e6)

#Define a sigmoid function
def underlyingFunction(x,x0=305,y0=200,yrange=4):
        return (yrange/2)*np.tanh(x-x0) + y0

xp1,xp2,xmid = 5,2,305  #Set gamma distribution parameters
yp1,yp2 = 0,12          #Set normal distribution parameters (mean and std)

#Generate random samples of X from the gamma distribution
x = -(np.random.gamma(xp1,xp2,int(numSamples))-xp1*xp2) + xmid
#Generate random samples of y from x and add normally distributed noise
y = underlyingFunction(x) + np.random.normal(loc=yp1,scale=yp2,size=numSamples)

Now that we have the x,y samples, the following code calculates the conditional

#***************************
# Calculate the conditional
#***************************
# note that conditiong variables ('x' in this case) are listed first
# in the var_names argument
cPDF = fastkde.conditional(y, x, var_names = ['x', 'y'])

The following plot shows the results:

#***************************
# Plot the conditional
#***************************
fig,axs = plt.subplots(1,2,figsize=(10,5), sharex=True, sharey=True)

#Plot a scatter plot of the incoming data
axs[0].plot(x,y,'k.',alpha=0.1)
axs[0].set_title('Original (x,y) data')
axs[0].set_xlabel('x')
axs[0].set_ylabel('y')

#Draw a contour plot of the conditional
cPDF.plot(ax = axs[1], add_colorbar = False)
#Overplot the original underlying relationship
axs[1].plot(cPDF.x,underlyingFunction(cPDF.x),linewidth=3,linestyle='--',alpha=0.5)
axs[1].set_title('P(y|x)')

plt.savefig('conditional_demo.png')
plt.show()

Image of conditional distribution demonstration

Kernel Density Estimate for Specific Points

To see the KDE values at specified points (not necessarily those that were used to generate the KDE):

""" Demonstrate using the pdf_at_points function. """""
import fastkde
train_x = 50*np.random.normal(size=100) + 0.1
train_y = 0.01*np.random.normal(size=100) - 300

test_x = 50*np.random.normal(size=100) + 0.1
test_y = 0.01*np.random.normal(size=100) - 300

test_points = list(zip(test_x, test_y))
test_point_pdf_values = fastkde.pdf_at_points(train_x, train_y, list_of_points = test_points)

Note that this method can be significantly slower than calls to fastkde.pdf() since it does not benefit from using a fast Fourier transform during the final stage in which the PDF estimate is transformed from spectral space into data space, whereas fastkde.pdf() does.

How do I get set up?

python -m pip install fastkde

Copyright Information

See LICENSE.txt