Skip to content

Digit recognition using neural networks(CNN classification technique)

Notifications You must be signed in to change notification settings

Laksh1701/Digit-Recognition-Using-ML-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

21bd8f4 · Mar 14, 2023

History

3 Commits
Mar 14, 2023
Mar 14, 2023
Mar 14, 2023
Mar 14, 2023

Repository files navigation

Digit-Recognition-Using-ML

To implement handwritten digit recognition using neural networks. This research work analyses the behaviour of classification techniques (CNN) in a large handwriting dataset (MNIST) to predict a digit.

Dataset

https://www.kaggle.com/datasets/hojjatk/mnist-dataset

Algorithm

Convolutional Neural Networks (CNN)

Convolutional Neural Networks are categorized as deep artificial neural networks. It isused for image recognition and also in object recognition. It has been used under various other applications in detection algorithms. CNN’s core building block is the convolutional layer. This layer parameter is composed of kernels (also known as learnable filters) which have a not-so-large receptive field but extend through the full depth of the input volume. When the forward pass is applied, each filter is convolved across the width and height of the input and then computing the dot product and then developing a 2-D activation map of the corresponding filter. As a result, the network learns when they see certain types of features at a spatial location in the input. Activation maps are then given in the lower sample layer and, as a decision, this method is applied to a patch time. CNN has a fully connected layer, which classifies the output with a label per node.

Output:

image image image image

About

Digit recognition using neural networks(CNN classification technique)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages