forked from sth1997/GraphSet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscalability.py
107 lines (88 loc) · 3.76 KB
/
scalability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import os
import math
import matplotlib.pyplot as plt
from settings import *
from utils import *
PATTERNS = []
PATTERNS.append("0111010011100011100001100") # p3
PATTERNS.append("011011101110110101011000110000101000") # p4
PATTERNS.append("011111101000110111101010101101101010") # p5
PATTERNS.append("011110101101110000110000100001010010") # p6
PATTERNS.append("0111111101111111011101110100111100011100001100000") # p7
PATTERNS.append("0111111101111111011001110100111100011000001100000") # p8
PATTERNS.append("011101110") # p1
PATTERNS.append("0111101111011110") # p2
GRAPH = "livejournal"
GPU_CARDS = [1, 2, 4, 8]
def pattern_matching_scalability(
is_gpu: bool = False,
bin_path: str = "../build/bin",
log_path: str = "../reproduce_log/pattern_matching_scalability",
result_path: str = "../reproduce_result",
):
if not is_gpu:
return NotImplementedError
log_path = log_path + ("_gpu" if is_gpu else "_cpu")
if not os.path.exists(log_path):
os.makedirs(log_path)
result_path = result_path
if not os.path.exists(result_path):
os.makedirs(result_path)
result_path = (
f"{result_path}/pattern_matching_scalability" + ("_gpu" if is_gpu else "_cpu") + ".csv"
)
data = []
data.append(["Cards"] + GPU_CARDS)
execute_name = "gpu_graph_static_task" if is_gpu else "pm_test"
for p in range(len(PATTERNS)):
tmp = [f"p{p+1}"]
for n in range(len(GPU_CARDS)):
log_name = f"{log_path}/{GRAPH}_p{p + 1}_n{GPU_CARDS[n]}.log"
command = f"{bin_path}/{execute_name} {DATA_PATH}/{GRAPH}.g 0 {PATTERNS[p]} {GPU_CARDS[n]} 1>{log_name}"
print(command, flush=True)
result = os.system(MULTI_CARD_COMMAND_PREFIX + command)
tmp.append(read_time_cost(log_name))
if result != 0:
return 1
data.append(tmp)
write_table(data, result_path)
return 0
def draw_pattern_matching_scalability(is_gpu: bool = False, result_path: str = "../reproduce_result"):
if not is_gpu:
return NotImplementedError
with open(f"{result_path}/pattern_matching_scalability" + ("_gpu" if is_gpu else "_cpu") + ".csv", newline='') as csvfile:
reader = csv.reader(csvfile)
# first line is header: Pattern, [graph_names]
header = next(reader)
# other lines are data
data = []
for row in reader:
data.append(row)
# first column is pattern names
pattern_names = [data[i][0] for i in range(0, len(data))]
# other columns are time costs
time_costs = [data[i][1:] for i in range(0, len(data))]
print(time_costs)
# draw a line graph consisting of the acceleration of each pattern
for i in range(len(PATTERNS)):
# convert string to float
time_costs[i] = list(map(float, time_costs[i]))
# calculate acceleration
time_costs[i] = [time_costs[i][0] / time_costs[i][j] for j in range(len(time_costs[i]))]
print(time_costs)
# draw
plt.figure(figsize=(8, 8))
plt.title("Pattern Matching Scalability" + (" (GPU)" if is_gpu else " (CPU)"))
plt.xlabel("Cards")
plt.ylabel("Acceleration")
for i in range(len(pattern_names)):
plt.plot(GPU_CARDS, time_costs[i], label=pattern_names[i], marker='o')
# set x axis to log scale base 2
plt.loglog(base=2)
plt.legend()
plt.savefig(f"{result_path}/pattern_matching_scalability" + ("_gpu" if is_gpu else "_cpu") + ".png")
if __name__ == "__main__":
print("Reproducing pattern matching scalability on GPU... (Expected time cost: 1 hour) ")
assert pattern_matching_scalability(is_gpu=True) == 0
draw_pattern_matching_scalability(is_gpu=True)
print("Finished.")