Skip to content

LiYunfengLYF/LightFC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LightFC

The official implementation of LightFC

News

  • 14 Oct 2023: our code is available now
  • 09 Oct 2023: our manuscript have submitted to arxiv
  • 12 Jan 2024: lightfc-vit with higher performance is released !

Install the environment

Option1: Use the Anaconda

conda create -n lightfc python=3.9
conda activate lightfc
bash install.sh

Data Preparation

Follow stark and ostrack frameworks to set your datasets

File directory

Project file directory should be like

${YOUR_PROJECT_ROOT}
     -- experiments
         |-- lightfc
     -- external
         |-- vot20st
     -- lib
         |--models
         ...
     -- outputs (download and unzip the output.zip to obtain our checkpoints and row results)
         |--checkpoints
             |--...
         |--test
             |--...
     -- pretrained_models (if you want to train lightfc, put pretrained model here)
         |--mobilenetv2.pth (from torchvision model)
         ...    
     -- tracking
         ...

Download lightfc checkpoint and raw results at Google Drive

Download lightfc-vit checkpoint and raw results at Google Drive

Then go to these two files, and modify the paths

lib/train/admin/local.py  # paths about training
lib/test/evaluation/local.py  # paths about testing

Train LightFC

Training with multiple GPUs using DDP

python tracking/train.py --script LightFC --config mobilnetv2_p_pwcorr_se_scf_sc_iab_sc_adj_concat_repn33_se_conv33_center_wiou --save_dir . --mode multiple --nproc_per_node 2 

If you want to train lightfc, please download https://download.pytorch.org/models/mobilenet_v2-b0353104.pth rather than https://download.pytorch.org/models/mobilenet_v2-7ebf99e0.pth

if you want to train lightfc-vit, please download https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_5m_22k_distill.pth

Test and evaluate LightFC on benchmarks

Go to tracking/test.py and modify the parameters

python tracking/test.py

Then go to tracking/analysis_results.py and modify the parameters

python tracking/analysis_results.py

Test FLOPs, Params, and Speed

# Params and FLOPs
python tracking/profile_model.py
# Speed
python tracking/speed.py

Acknowledgments

  • Thanks for the great stark and ostrack Libraries, which helps us to quickly implement our ideas.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published