English | 简体中文
- Environment dependence:
- PaddlePaddle >= 2.3.0
- Python >= 3.6
- CUDA >= 10.1
pip
pip install paddledata
from source
python setup.py install
# load imagenet dataset
import sys
import time
import paddle
import paddledata
data_root = '/path/to/imagenet/ILSVRC2012/train/'
def imagenet_pipeline():
image, label = paddle.vision.reader.file_label_reader(data_root,
batch_size=64,
shuffle=True,
drop_last=True)
def decode(image):
image = paddledata.ops.decode_random_crop(image)
return image
def resize(image):
image = paddle.vision.ops.image_resize(image, size=224, data_format='NHWC')
return image
def transpose(image):
image = paddle.transpose(image, [0, 3, 1, 2])
return image
image = paddle.io.map(decode, image)
image = paddle.io.map(resize, image)
return {'image': image, 'label': label}
dataloader = paddle.io.DataLoader(imagenet_pipeline)
for i, data in enumerate(dataloader):
print('index:', i, data['image'].shape, data['image'].place, data['image'].dtype)
- v0.1.0 (2023.04.15)
- Release first version
Contributions and suggestions are highly welcomed. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring. When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA. Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA. For more, please reference contribution guidelines.
PaddleGAN is released under the Apache 2.0 license.