Skip to content

Commit

Permalink
Upload final equation
Browse files Browse the repository at this point in the history
  • Loading branch information
LimHyungTae committed Feb 6, 2025
1 parent 74f3ad3 commit 7ea9092
Showing 1 changed file with 2 additions and 5 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -157,14 +157,11 @@ $$\boldsymbol{e} = || (\mathbf{R}_1\mathbf{z} + \mathbf{t}_1) - \mathbf{t}_2 ||^
$$\mathbf{R}_1(\mathbf{I} + \left[\boldsymbol{w}_1\right]_\times)\boldsymbol{z} + \mathbf{t}_1 + \mathbf{R}_1\boldsymbol{v}_1 - \mathbf{t}_2 - \mathbf{R}_2\boldsymbol{v}_2 \\
= \mathbf{R}_1 \boldsymbol{z} + \mathbf{R}_1 \left[\boldsymbol{w}_1\right]_\times \boldsymbol{z} + \mathbf{t}_1 + \mathbf{R}_1\boldsymbol{v}_1 - \mathbf{t}_2 - \mathbf{R}_2\boldsymbol{v}_2 \\
= (\mathbf{R}_1 \boldsymbol{z} + \mathbf{t}_1 - \mathbf{t}_2) + \mathbf{R}_1 \left[\boldsymbol{w}_1\right]_\times\mathbf{R}_1^\intercal \mathbf{R}_1 \boldsymbol{z} + \mathbf{R}_1\boldsymbol{v}_1 - \mathbf{R}_2\boldsymbol{v}_2 \\
= (\mathbf{R}_1 \boldsymbol{z} + \mathbf{t}_1 - \mathbf{t}_2) - \left[ \mathbf{R}_1 \boldsymbol{z}\right]_\times \mathbf{R}_1 \boldsymbol{w}_1 + \mathbf{R}_1\boldsymbol{v}_1 - \mathbf{R}_2\boldsymbol{v}_2 \; \; \; \; \text{(8)}
$$
= (\mathbf{R}_1 \boldsymbol{z} + \mathbf{t}_1 - \mathbf{t}_2) - \left[ \mathbf{R}_1 \boldsymbol{z}\right]_\times \mathbf{R}_1 \boldsymbol{w}_1 + \mathbf{R}_1\boldsymbol{v}_1 - \mathbf{R}_2\boldsymbol{v}_2 \; \; \; \; \text{(8)} $$

따라서 (8)에 따라 $$\mathbf{H}_1$$$$\mathbf{H}_2$$는 아래와 같이 정의된다:

$$\mathbf{H}_1 = \left[\mathbf{R}_2^\intercal \left(\mathbf{t}_1 - \mathbf{t}_2\right) \;\;\; -\mathbf{I}_{3 \times 3} \right] \in \mathbb{R}^{3 \times 6}, \; \; \; \mathbf{H}_2 = \left[\mathbf{O}_{3 \times 3} \;\;\; \mathbf{R}_2^\intercal \mathbf{R}_1 \right] \in \mathbb{R}^{3 \times 6} \; \; \; \; \text{(9)}$$


$$\mathbf{H}_1 = \left[ - \left[ \mathbf{R}_1 \boldsymbol{z}\right]_\times \mathbf{R}_1 \;\;\; \mathbf{R}_1 \right] \in \mathbb{R}^{3 \times 6}, \; \; \; \mathbf{H}_2 = \left[\mathbf{O}_{3 \times 3} \;\;\; \mathbf{R}_2 \right] \in \mathbb{R}^{3 \times 6} \; \; \; \; \text{(9)}$$

## 결론

Expand Down

0 comments on commit 7ea9092

Please sign in to comment.