Skip to content
forked from xh3204/LRGNN

This is the code of paper "Speedup Robust Graph Structure Learning with Low-Rank Information".

Notifications You must be signed in to change notification settings

Lindi798/Low-Rank-GNN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LRGNN

Speedup Robust Graph Structure Learning with Low-Rank Information Speedup Robust Graph Structure Learning with Low-Rank Information

Installation

  1. conda create -n lrgnn python=3.9.11
  2. conda activate lrgnn
  3. conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
  4. pip install -U tensorly
  5. pip install deeprobust
  6. pip install torch_geometric
  7. pip install torch_sparse -f https://data.pyg.org/whl/torch-1.12.1+cu113.html

How to run

### LRGNN
python main.py --dataset cora

### LRGNN(S)
python main.py --dataset cora --sparse

Citation

If you find this repository, e.g., the paper, code and the datasets, useful in your research, please cite the following paper:

@inproceedings{xu2021speedup,
  title={Speedup robust graph structure learning with low-rank information},
  author={Xu, Hui and Xiang, Liyao and Yu, Jiahao and Cao, Anqi and Wang, Xinbing},
  booktitle={Proceedings of the 30th ACM International Conference on Information \& Knowledge Management},
  pages={2241--2250},
  year={2021}
}

About

This is the code of paper "Speedup Robust Graph Structure Learning with Low-Rank Information".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%