Speedup Robust Graph Structure Learning with Low-Rank Information
- conda create -n lrgnn python=3.9.11
- conda activate lrgnn
- conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
- pip install -U tensorly
- pip install deeprobust
- pip install torch_geometric
- pip install torch_sparse -f https://data.pyg.org/whl/torch-1.12.1+cu113.html
### LRGNN
python main.py --dataset cora
### LRGNN(S)
python main.py --dataset cora --sparse
If you find this repository, e.g., the paper, code and the datasets, useful in your research, please cite the following paper:
@inproceedings{xu2021speedup,
title={Speedup robust graph structure learning with low-rank information},
author={Xu, Hui and Xiang, Liyao and Yu, Jiahao and Cao, Anqi and Wang, Xinbing},
booktitle={Proceedings of the 30th ACM International Conference on Information \& Knowledge Management},
pages={2241--2250},
year={2021}
}