forked from dmlc/nnvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TEST] Xavie initialization for benchmarks (dmlc#54)
* [TEST] Xavie initialization for benchmarks * remove additional line
- Loading branch information
Showing
4 changed files
with
129 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
"""Initializer of parameters.""" | ||
import numpy as np | ||
|
||
class Initializer(object): | ||
"""The base class of an initializer.""" | ||
def __init__(self, **kwargs): | ||
self._kwargs = kwargs | ||
|
||
def __call__(self, desc, arr): | ||
"""Initialize an array | ||
Parameters | ||
---------- | ||
desc : str | ||
Initialization pattern descriptor. | ||
arr : NDArray | ||
The array to be initialized. | ||
""" | ||
if desc.endswith('weight'): | ||
self._init_weight(desc, arr) | ||
elif desc.endswith('bias'): | ||
self._init_bias(desc, arr) | ||
elif desc.endswith('gamma'): | ||
self._init_gamma(desc, arr) | ||
elif desc.endswith('beta'): | ||
self._init_beta(desc, arr) | ||
elif desc.endswith('mean'): | ||
self._init_mean(desc, arr) | ||
elif desc.endswith('var'): | ||
self._init_var(desc, arr) | ||
else: | ||
self._init_default(desc, arr) | ||
|
||
def _init_bias(self, _, arr): | ||
arr[:] = 0.0 | ||
|
||
def _init_gamma(self, _, arr): | ||
arr[:] = 1.0 | ||
|
||
def _init_beta(self, _, arr): | ||
arr[:] = 0.0 | ||
|
||
def _init_mean(self, _, arr): | ||
arr[:] = 0.0 | ||
|
||
def _init_var(self, _, arr): | ||
arr[:] = 1.0 | ||
|
||
def _init_weight(self, name, arr): | ||
"""Abstract method to Initialize weight.""" | ||
raise NotImplementedError("Must override it") | ||
|
||
def _init_default(self, name, _): | ||
raise ValueError( | ||
'Unknown initialization pattern for %s. ' \ | ||
'Default initialization is now limited to '\ | ||
'"weight", "bias", "gamma" (1.0), and "beta" (0.0).' \ | ||
'Please use mx.sym.Variable(init=mx.init.*) to set initialization pattern' % name) | ||
|
||
|
||
class Xavier(Initializer): | ||
""" "Xavier" initialization for weights | ||
Parameters | ||
---------- | ||
rnd_type: str, optional | ||
Random generator type, can be ``'gaussian'`` or ``'uniform'``. | ||
factor_type: str, optional | ||
Can be ``'avg'``, ``'in'``, or ``'out'``. | ||
magnitude: float, optional | ||
Scale of random number. | ||
""" | ||
def __init__(self, rnd_type="uniform", factor_type="avg", magnitude=3): | ||
super(Xavier, self).__init__(rnd_type=rnd_type, | ||
factor_type=factor_type, | ||
magnitude=magnitude) | ||
self.rnd_type = rnd_type | ||
self.factor_type = factor_type | ||
self.magnitude = float(magnitude) | ||
|
||
|
||
def _init_weight(self, name, arr): | ||
shape = arr.shape | ||
hw_scale = 1. | ||
if len(shape) < 2: | ||
raise ValueError('Xavier initializer cannot be applied to vector {0}. It requires at' | ||
' least 2D.'.format(name)) | ||
if len(shape) > 2: | ||
hw_scale = np.prod(shape[2:]) | ||
fan_in, fan_out = shape[1] * hw_scale, shape[0] * hw_scale | ||
factor = 1. | ||
if self.factor_type == "avg": | ||
factor = (fan_in + fan_out) / 2.0 | ||
elif self.factor_type == "in": | ||
factor = fan_in | ||
elif self.factor_type == "out": | ||
factor = fan_out | ||
else: | ||
raise ValueError("Incorrect factor type") | ||
# Hack for mobilenet, because there is less connectivity | ||
if "depthwise" in name: | ||
factor = 3 * 3 | ||
scale = np.sqrt(self.magnitude / factor) | ||
if self.rnd_type == "uniform": | ||
arr[:] = np.random.uniform(-scale, scale, size=arr.shape) | ||
else: | ||
raise ValueError("Unknown random type") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters