Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
michaelfeil authored Nov 12, 2023
1 parent bc1e6bc commit 3f108a7
Showing 1 changed file with 3 additions and 3 deletions.
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@
| 2022-01 | COT | Google | [Chain-of-Thought Prompting Elicits Reasoning in Large Language Models](https://arxiv.org/pdf/2201.11903.pdf) | NeurIPS<br>![Dynamic JSON Badge](https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fapi.semanticscholar.org%2Fgraph%2Fv1%2Fpaper%2F1b6e810ce0afd0dd093f789d2b2742d047e316d5%3Ffields%3DcitationCount&query=%24.citationCount&label=citation)|
| 2022-01 | LaMDA | Google | [LaMDA: Language Models for Dialog Applications](https://arxiv.org/pdf/2201.08239.pdf) |![Dynamic JSON Badge](https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fapi.semanticscholar.org%2Fgraph%2Fv1%2Fpaper%2Fb3848d32f7294ec708627897833c4097eb4d8778%3Ffields%3DcitationCount&query=%24.citationCount&label=citation)|
| 2022-01 | Minerva | Google | [Solving Quantitative Reasoning Problems with Language Models](https://arxiv.org/abs/2206.14858) | NeurIPS<br> ![Dynamic JSON Badge](https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fapi.semanticscholar.org%2Fgraph%2Fv1%2Fpaper%2Fab0e3d3e4d42369de5933a3b4c237780b41c0d77%3Ffields%3DcitationCount&query=%24.citationCount&label=citation) |
| 2022-01 | Megatron-Turing NLG | Microsoft&NVIDIA | [Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model](https://arxiv.org/pdf/2201.11990.pdf) | ![Dynamic JSON Badge](https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fapi.semanticscholar.org%2Fgraph%2Fv1%2Fpaper%2F7cbc2a7843411a1768ab762930707af0a3c33a19%3Ffields%3DcitationCount&query=%24.citationCount&label=citation)|
| 2022-01 | Megatron-Turing NLG | Microsoft&NVIDIA | [Using Deep and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model](https://arxiv.org/pdf/2201.11990.pdf) | ![Dynamic JSON Badge](https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fapi.semanticscholar.org%2Fgraph%2Fv1%2Fpaper%2F7cbc2a7843411a1768ab762930707af0a3c33a19%3Ffields%3DcitationCount&query=%24.citationCount&label=citation)|
| 2022-03 | InstructGPT | OpenAI | [Training language models to follow instructions with human feedback](https://arxiv.org/pdf/2203.02155.pdf) |![Dynamic JSON Badge](https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fapi.semanticscholar.org%2Fgraph%2Fv1%2Fpaper%2Fd766bffc357127e0dc86dd69561d5aeb520d6f4c%3Ffields%3DcitationCount&query=%24.citationCount&label=citation)|
| 2022-04 | PaLM | Google | [PaLM: Scaling Language Modeling with Pathways](https://arxiv.org/pdf/2204.02311.pdf) |![Dynamic JSON Badge](https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fapi.semanticscholar.org%2Fgraph%2Fv1%2Fpaper%2F094ff971d6a8b8ff870946c9b3ce5aa173617bfb%3Ffields%3DcitationCount&query=%24.citationCount&label=citation)|
| 2022-04 | Chinchilla | DeepMind | [An empirical analysis of compute-optimal large language model training](https://www.deepmind.com/publications/an-empirical-analysis-of-compute-optimal-large-language-model-training) | NeurIPS<br> ![Dynamic JSON Badge](https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fapi.semanticscholar.org%2Fgraph%2Fv1%2Fpaper%2Fbb0656031cb17adf6bac5fd0fe8d53dd9c291508%3Ffields%3DcitationCount&query=%24.citationCount&label=citation) |
Expand Down Expand Up @@ -306,10 +306,10 @@ The above tables coule be better summarized by this wonderful visualization from
- [CometLLM](https://github.com/comet-ml/comet-llm) - A 100% opensource LLMOps platform to log, manage, and visualize your LLM prompts and chains. Track prompt templates, prompt variables, prompt duration, token usage, and other metadata. Score prompt outputs and visualize chat history all within a single UI.
- [IntelliServer](https://github.com/intelligentnode/IntelliServer) - simplifies the evaluation of LLMs by providing a unified microservice to access and test multiple AI models.
- [OpenLLM](https://github.com/bentoml/OpenLLM) - Fine-tune, serve, deploy, and monitor any open-source LLMs in production. Used in production at [BentoML](https://bentoml.com/) for LLMs-based applications.
- [DeepSpeed-Mii] - MII makes low-latency and high-throughput inference, similar to vLLM powered by DeepSpeed.
- [DeepSpeed-Mii](https://github.com/microsoft/DeepSpeed-MII) - MII makes low-latency and high-throughput inference, similar to vLLM powered by DeepSpeed.
- [Text-Embeddings-Inference](https://github.com/huggingface/text-embeddings-inference) - Inference for text-embeddings in Rust, HFOIL Licence.
- [Infinity](https://github.com/michaelfeil/infinity) - Inference for text-embeddings in Python

- [TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM) - Nvidia Framework for LLM Inference
## Prompting libraries & tools

- [YiVal](https://github.com/YiVal/YiVal) — Evaluate and Evolve: YiVal is an open-source GenAI-Ops tool for tuning and evaluating prompts, configurations, and model parameters using customizable datasets, evaluation methods, and improvement strategies.
Expand Down

0 comments on commit 3f108a7

Please sign in to comment.