forked from LiuFG/PC-DARTS-LFW
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_face.py
317 lines (285 loc) · 14.1 KB
/
train_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
import sys
import numpy as np
import time
import torch
import utils
import glob
import random
import logging
import argparse
import torch.nn as nn
import genotypes
import torch.utils
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from model import NetworkFace as Network
from data import create_loader, ImageList, FastCollateMixup, resolve_data_config
from mfcode.lfw_eval import validate as lfw_eval
from torch.utils.tensorboard import SummaryWriter
parser = argparse.ArgumentParser("training face")
parser.add_argument('--workers', type=int, default=4, help='number of workers to load dataset')
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--learning_rate', type=float, default=0.4, help='init learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=3e-5, help='weight decay')
parser.add_argument('--report_freq', type=float, default=400, help='report frequency')
parser.add_argument('--epochs', type=int, default=80, help='num of training epochs')
parser.add_argument('--init_channels', type=int, default=48, help='num of init channels')
parser.add_argument('--layers', type=int, default=14, help='total number of layers')
parser.add_argument('--auxiliary', action='store_true', default=True, help='use auxiliary tower')
parser.add_argument('--auxiliary_weight', type=float, default=0.3, help='weight for auxiliary loss')
parser.add_argument('--drop_path_prob', type=float, default=0.0, help='drop path probability')
parser.add_argument('--save', type=str, default='./res/full_train/', help='experiment name')
parser.add_argument('--seed', type=int, default=0, help='random seed')
parser.add_argument('--arch', type=str, default='PCDARTS', help='which architecture to use')
parser.add_argument('--grad_clip', type=float, default=5., help='gradient clipping')
parser.add_argument('--label_smooth', type=float, default=0.2, help='label smoothing')
parser.add_argument('--use_dropout', action='store_true', default=True, help='no')
parser.add_argument('--lr_scheduler', type=str, default='linear', help='lr scheduler, linear or cosine')
parser.add_argument('--note', type=str, default='try', help='note for this run')
parser.add_argument('--root_path', type=str, default='/home/liufg/my_work/data_augment/face/webface_crop/train',
metavar='H', help='Dir Head')
# parser.add_argument('--load_path', type=str, default='./res/full_train/eval-try-20200503-120751/model_best.pth.tar')
parser.add_argument('--load_path', type=str, default=None)
parser.add_argument('--trainFile', type=str, default='trainlist_full.txt', metavar='TRF', help='training file name')
# parser.add_argument('--testFile', type=str, default='test.txt', metavar='TEF',
# help='test file name')
parser.add_argument('--val_list', default='/home/liufg/my_work/data_augment/face/LFW/pairs.txt', type=str)
parser.add_argument('--val_folder', default='/home/liufg/my_work/data_augment/face/LFW/aligned', type=str)
parser.add_argument('--val_imlist', default='/home/liufg/my_work/data_augment/face/LFW/image_list.txt', type=str)
parser.add_argument('--prefetcher', action='store_true', default=True,
help='disable fast prefetcher')
# Augmentation parameters
parser.add_argument('--aa', type=str, default=None, metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". (default: None)'),
parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)') # change: to 0, original: 0.4
parser.add_argument('--reprob', type=float, default=0.9, metavar='PCT',
help='Random erase prob (default: 0.)') # 0 means switch off ?? to check
parser.add_argument('--remode', type=str, default='const',
help='Random erase mode (default: "const")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--mixup', type=float, default=0.0,
help='mixup alpha, mixup enabled if > 0. (default: 0.)') # 0.2 to switch on
parser.add_argument('--mixup-off-epoch', default=60, type=int, metavar='N',
help='turn off mixup after this epoch, disabled if 0 (default: 0)')
# Batch norm parameters (only works with gen_efficientnet based models currently)
parser.add_argument('--bn-tf', action='store_true', default=False,
help='Use Tensorflow BatchNorm defaults for models that support it (default: False)')
parser.add_argument('--bn-momentum', type=float, default=None,
help='BatchNorm momentum override (if not None)')
parser.add_argument('--bn-eps', type=float, default=None,
help='BatchNorm epsilon override (if not None)')
args, unparsed = parser.parse_known_args()
args.save = '{}eval-{}-{}'.format(args.save, args.note, time.strftime("%Y%m%d-%H%M%S"))
utils.create_exp_dir(args.save, scripts_to_save=glob.glob('*.py'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
CLASSES = 10576
class CrossEntropyLabelSmooth(nn.Module):
def __init__(self, num_classes, epsilon):
super(CrossEntropyLabelSmooth, self).__init__()
self.num_classes = num_classes
self.epsilon = epsilon
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, inputs, targets):
log_probs = self.logsoftmax(inputs)
targets = torch.zeros_like(log_probs).scatter_(1, targets.unsqueeze(1), 1)
targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
loss = (-targets * log_probs).mean(0).sum()
return loss
def main():
if not torch.cuda.is_available():
logging.info('No GPU device available')
sys.exit(1)
np.random.seed(args.seed)
cudnn.benchmark = True
torch.manual_seed(args.seed)
cudnn.enabled = True
torch.cuda.manual_seed(args.seed)
logging.info("args = %s", args)
logging.info("unparsed_args = %s", unparsed)
num_gpus = torch.cuda.device_count()
genotype = eval("genotypes.%s" % args.arch)
print('---------Genotype---------')
logging.info(genotype)
print('--------------------------')
model = Network(args.init_channels, CLASSES, args.layers, args.auxiliary, genotype, args.use_dropout)
if num_gpus > 1:
model = nn.DataParallel(model)
model = model.cuda()
else:
model = model.cuda()
logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
if args.load_path is not None:
pretrained_dict = torch.load(os.path.expanduser(args.load_path),
map_location=lambda storage, loc: storage)
model_dict = model.state_dict() # 获取模型的参数字典
model_dict.update(pretrained_dict['state_dict']) # pretrained_dict与model_dict相同key的value的维度必须相同
model.load_state_dict(model_dict) # 更新模型权重
criterion = nn.CrossEntropyLoss()
criterion = criterion.cuda()
criterion_smooth = CrossEntropyLabelSmooth(CLASSES, args.label_smooth)
criterion_smooth = criterion_smooth.cuda()
optimizer = torch.optim.SGD(
model.parameters(),
args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay
)
dataset_train = ImageList(root=args.root_path, fileList=args.root_path + '/' + args.trainFile)
collate_fn = None
if args.prefetcher and args.mixup > 0:
collate_fn = FastCollateMixup(args.mixup, args.smoothing, args.num_classes)
num_train = len(dataset_train)
train_queue = create_loader(
dataset_train, # here call the transform implicitly
input_size=144,
batch_size=args.batch_size,
is_training=True,
use_prefetcher=args.prefetcher,
rand_erase_prob=args.reprob,
rand_erase_mode=args.remode,
color_jitter=args.color_jitter,
interpolation='random', # FIXME cleanly resolve this? data_config['interpolation'],
# mean=data_config['mean'],
# std=data_config['std'],
num_workers=args.workers,
collate_fn=collate_fn,
auto_augment=args.aa,
use_aug=True
)
# scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.decay_period, gamma=args.gamma)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs))
best_LFWACC = 0
lr = args.learning_rate
writer = SummaryWriter(os.path.join(args.save, 'tensorboard'), comment='pcdarts-for-LFW')
for epoch in range(args.epochs):
if args.lr_scheduler == 'cosine':
scheduler.step()
current_lr = scheduler.get_lr()[0]
elif args.lr_scheduler == 'linear':
current_lr = adjust_lr(optimizer, epoch)
else:
print('Wrong lr type, exit')
sys.exit(1)
logging.info('Epoch: %d lr %e', epoch, current_lr)
if epoch < 5 and args.load_path is None: # and args.batch_size > 256:
for param_group in optimizer.param_groups:
param_group['lr'] = lr * (epoch + 1) / 5.0
current_lr = lr * (epoch + 1) / 5.0
logging.info('Warming-up Epoch: %d, LR: %e', epoch, current_lr)
if num_gpus > 1:
model.module.drop_path_prob = args.drop_path_prob * epoch / args.epochs
else:
model.drop_path_prob = args.drop_path_prob * epoch / args.epochs
epoch_start = time.time()
train_acc, train_obj = train(train_queue, model, criterion_smooth, optimizer)
logging.info('Train_acc: %f', train_acc)
writer.add_scalar('lr', current_lr, epoch)
writer.add_scalar('train_acc', train_acc, epoch)
writer.add_scalar('train_loss', train_obj, epoch)
if (epoch >= 50 and (epoch+1) % 2 == 0) or args.load_path is not None:
# valid_acc, valid_obj = infer(valid_queue, model, criterion)
# logging.info('valid_acc %f', valid_acc)
LFWACC, std, thd = lfw_eval(args, model)
logging.info('lfw_eval LFW_ACC:%f LFW_std:%f LFW_thd:%f', LFWACC, std, thd)
writer.add_scalar('LFW_ACC', LFWACC, epoch)
writer.add_scalar('LFW_std', std, epoch)
writer.add_scalar('LFW_thd', thd, epoch)
is_best = False
if LFWACC >= best_LFWACC:
best_LFWACC = LFWACC
is_best = True
logging.info('lfw_eval BEST_LFW_ACC:%f', best_LFWACC)
utils.save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_LFWACC': best_LFWACC,
'optimizer': optimizer.state_dict(),
}, is_best, args.save)
writer.close()
def adjust_lr(optimizer, epoch):
# Smaller slope for the last 5 epochs because lr * 1/250 is relatively large
if args.epochs - epoch > 5:
lr = args.learning_rate * (args.epochs - 5 - epoch) / (args.epochs - 5)
else:
lr = args.learning_rate * (args.epochs - epoch) / ((args.epochs - 5) * 5)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def train(train_queue, model, criterion, optimizer):
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
batch_time = utils.AvgrageMeter()
model.train()
for step, (input, target) in enumerate(train_queue):
target = target.cuda(non_blocking=True)
input = input.cuda(non_blocking=True)
b_start = time.time()
optimizer.zero_grad()
logits, logits_aux = model(input)
loss = criterion(logits, target)
if args.auxiliary:
loss_aux = criterion(logits_aux, target)
loss += args.auxiliary_weight * loss_aux
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
optimizer.step()
batch_time.update(time.time() - b_start)
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
n = input.size(0)
objs.update(loss.data.item(), n)
top1.update(prec1.data.item(), n)
top5.update(prec5.data.item(), n)
if step % args.report_freq == 0:
end_time = time.time()
if step == 0:
duration = 0
start_time = time.time()
else:
duration = end_time - start_time
start_time = time.time()
logging.info('TRAIN Step: %03d Objs: %e R1: %f R5: %f Duration: %ds BTime: %.3fs',
step, objs.avg, top1.avg, top5.avg, duration, batch_time.avg)
# writer.add_scalar('train_acc', train_acc, epoch*self.num_batch + step)
# writer.add_scalar('train_loss', train_obj, epoch*self.num_batch + step)
return top1.avg, objs.avg
def infer(valid_queue, model, criterion):
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
model.eval()
for step, (input, target) in enumerate(valid_queue):
input = input.cuda()
target = target.cuda(non_blocking=True)
with torch.no_grad():
logits, _ = model(input)
loss = criterion(logits, target)
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
n = input.size(0)
objs.update(loss.data.item(), n)
top1.update(prec1.data.item(), n)
top5.update(prec5.data.item(), n)
if step % args.report_freq == 0:
end_time = time.time()
if step == 0:
duration = 0
start_time = time.time()
else:
duration = end_time - start_time
start_time = time.time()
logging.info('VALID Step: %03d Objs: %e R1: %f R5: %f Duration: %ds', step, objs.avg, top1.avg, top5.avg,
duration)
return top1.avg, top5.avg, objs.avg
if __name__ == '__main__':
main()