Skip to content

LoveSiameseCat/PC-DARTS-LFW

 
 

Repository files navigation

PC-DARTS-LFW

Introduction

This repo is an application of PC-DARTS. We search architectures on Webface dataset and evaluate the model on LFW. Official version can be accepted from the link: yuhuixu1993/PC-DARTS

In this repo, my works are as below:

  • sample the proxy task to accelerate the search period
  • design the stems to fit webface dataset
  • use multi-process to accelerate LFW evalution
  • visualize the architecture parameters including alpha and beta by using tensorboard
  • parameters adjustment

Results

BEST

We get LFW_ACC 98.58% after 20 epochs fine-tune with dropout 0.4 based on warmup-epoch-15 PC-DARTS-LFW pretrained model. The result 98.38% of ResNet50 is reached after 30 epochs fine-tune with dropout 0.5 based on ImageNet pretrained model.

Model LFW_ACC Params
PC-DARTS-LFW 98.58% 13.04M
ResNet50 98.38% 25.5M

Experiment

warmup epochs

warmup epochs LFW_ACC Params geno result
10 97.93% 13.36M Genotype(normal=[('sep_conv_5x5', 0), ('sep_conv_5x5', 1), ('sep_conv_5x5', 1), ('sep_conv_5x5', 2), ('sep_conv_5x5', 3), ('sep_conv_5x5', 1), ('sep_conv_5x5', 4), ('max_pool_3x3', 3)], normal_concat=range(2, 6), reduce=[('sep_conv_5x5', 1), ('sep_conv_3x3', 0), ('max_pool_3x3', 1), ('avg_pool_3x3', 0), ('max_pool_3x3', 1), ('sep_conv_3x3', 0), ('max_pool_3x3', 2), ('skip_connect', 1)], reduce_concat=range(2, 6))
15 98.2% 13.04M Genotype(normal=[('sep_conv_5x5', 1), ('sep_conv_3x3', 0), ('sep_conv_5x5', 0), ('sep_conv_3x3', 2), ('sep_conv_5x5', 3), ('avg_pool_3x3', 2), ('sep_conv_3x3', 4), ('sep_conv_3x3', 1)], normal_concat=range(2, 6), reduce=[('max_pool_3x3', 1), ('max_pool_3x3', 0), ('max_pool_3x3', 1), ('max_pool_3x3', 2), ('sep_conv_5x5', 1), ('max_pool_3x3', 2), ('max_pool_3x3', 2), ('sep_conv_3x3', 3)], reduce_concat=range(2, 6))
25 97.93% 12.76M Genotype(normal=[('sep_conv_5x5', 1), ('sep_conv_5x5', 0), ('sep_conv_5x5', 1), ('dil_conv_3x3', 0), ('sep_conv_5x5', 3), ('sep_conv_5x5', 1), ('sep_conv_5x5', 4), ('max_pool_3x3', 2)], normal_concat=range(2, 6), reduce=[('max_pool_3x3', 1), ('max_pool_3x3', 0), ('max_pool_3x3', 1), ('max_pool_3x3', 0), ('max_pool_3x3', 1), ('max_pool_3x3', 0), ('max_pool_3x3', 2), ('max_pool_3x3', 3)], reduce_concat=range(2, 6))

experiment detail

search details

we get 10% Webface dataset to search. batch-size 128 case needs 20G memory. 1 search epoch needs ~13 min. One time LFW evaluation needs ~16 min.

retrain details

total 80 epochs, initial learning rate 0.4, linear decay data augmentation: color-jittor 0.4, label-smooth 0.2, random erase prob-0.9 mode-const count-1

visualization

we visualize all architecture parameters including 8 alpha and 1 beta as below.

[00, 01, 0, 1, 2, 3] represents 6 nodes in a cell. [00, 01] is input nodes. ori represents alpha parameters. res represents 8 alphas multiplying betas, which determines which path is selected.

Note: the same parameter line corresponds to different color.

Usage

Prepare

  • Enviroment
    • torch1.3
  • Dataset you can dowload Webface and LFW dataset from Baidu WangPan (password:030r) Then change the code-the augment about data path.

Search

python train_search_face.py 

retrain

Firstly, change your architechture in genotypes.py and then run train_face.py

python train_face.py 

Reference

yuhuixu1993/PC-DARTS

rwightman/pytorch-image-models

About

PC-DARTS for LFW using webface

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%