Data and code repository for QAOA with fewer qubits: a coupling framework to solve larger-scale Max-Cut problem (https://arxiv.org/abs/2307.15260).
Abstract Maximum cut (Max-Cut) problem is one of the most important combinatorial optimization problems because of its various applications in real life, and recently Quantum Approximate Optimization Algorithm (QAOA) has been widely employed to solve it. However, as the size of the problem increases, the number of qubits required will become larger. With the aim of saving qubits, we propose a coupling framework for designing QAOA circuits to solve larger-scale Max-Cut problem. This framework relies on a classical algorithm that approximately solves a certain variant of Max-Cut, and we derive an approximation guarantee theoretically, assuming the approximation ratio of the classical algorithm and QAOA. Furthermore we design a heuristic approach that fits in our framework and perform sufficient numerical experiments, where we solve Max-Cut on various