Skip to content

Luoadore/hyperspectral_exp_orz

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

hyperspectral_exp_orz

author:Luo Ya'nan

  • caffe_try

    Classification use caffe's python API.

    !!!not correct yet.

    • findTheSameData: Use for validating correction.
    • readLMDB: Transfrom data from lmdb to numpy.
    • save_feature: Save fc's feature maps and predicitions.
    • validate_param: Validate whether the paramerters of the deploy and train_test prototxt's net are the same.
  • mnist

    Try mnist data set use caffe's python API, get correct result.

    • load_mnist_data: Transform mnist data into the visiable form.
    • myload_mnist_data: Change some of the load data function, 具体什么忘记了...太久没用了
    • predict_label: Use API to batch classify test data.
    • mnist_solver: Train net hyperparams.
    • mnist_train_test: Train net model.
    • mnist_deploy: Prediction use, which is not include data layer.
    • mnist_mnist: Train net use Caffe command.
  • tf_try

    Classification use Tensorflow.

    • matlab_plot

      • plotting: Plorring curves.
      • read_test: Read test accuracy, loss, etc.
      • read_train: Read train accuracy, loss, etc.
    • python_analyze

      • center_or_border_statistics: Get center and border samples statistics
      • data_analysis: Get data mean, std, etc. And plot corresponding curves.
      • draw_test: Visualization of test samples' classification.
      • is_Generator: Judge whether GAN get good training.
      • plotting: Plotting accuracy and loss curves verses iterations.
      • read_data: Get the data after train and test.
      • t_sne: Dimensionality reduction.
    • GANs

      • cgan_tfonly.py: Conditional GAN.
      • gans_config: GAN configrations.
      • generator: generator of GANs.
      • preprocess_data: Preprocessing data and save .mat for each class.
      • train_gans: train GANs.
    • data_preprocessing: Extract and divide the original data set into train and test data set according to ratio.

    • data_preprocess_pos: Data preprocessing increases save position information.

    • load_data_tricks: Add class-0 for train.

    • generate_gaussian_noise: Generate gaussian noise.

    • test: Validate whether the data extract is correct with BPN net model.

    • deep_cnn: Deep net model.

    • original_cnn: Original net model.

    • train_original: Train original method.

    • train_deep: Train deep net method.

    • cnxgboost: Use cnn-fc output as feature to train xgboost.

    • train_test: 没有在做了,不完整的代码......

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published