-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
137 lines (106 loc) · 4.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse, os
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from data import DatasetFromHdf5
from model.rpmnet import Net
parser = argparse.ArgumentParser(description="RPMNet")
parser.add_argument("--batchSize", type=int, default=64, help="training batch size")
parser.add_argument("--nEpochs", type=int, default=200, help="number of epochs to train for")
parser.add_argument("--lr", type=float, default=0.0001, help="Learning Rate. Default=1e-4")
parser.add_argument("--step", type=int, default=50, help="Sets the learning rate to the initial LR decayed by "
"momentum every n epochs")
parser.add_argument("--cuda", action="store_true", help="Use cuda?")
parser.add_argument("--start-epoch", default=1, type=int, help="Manual epoch number (useful on restarts)")
parser.add_argument("--threads", type=int, default=1, help="Number of threads for data loader to use, Default: 1")
parser.add_argument("--momentum", default=0.9, type=float, help="Momentum, Default: 0.9")
parser.add_argument("--weight-decay", "--wd", default=1e-4, type=float, help="weight decay, Default: 1e-4")
parser.add_argument("--pretrained", default="", type=str, help="path to pretrained model (default: none)")
parser.add_argument("--dataset", default="./train_4_32.h5", type=str, help="path to load dataset")
parser.add_argument("--number", default="1", type=int, help="path to load dataset")
def train(training_data_loader, optimizer, model, criterion, epoch):
lr = adjust_learning_rate(optimizer, epoch - 1)
for param_group in optimizer.param_groups:
param_group["lr"] = lr
print("epoch =", epoch, "lr =", optimizer.param_groups[0]["lr"])
model.train()
for iteration, batch in enumerate(training_data_loader, 1):
input, label = Variable(batch[0]), Variable(batch[1], requires_grad=False)
if opt.cuda:
input = input.cuda()
label = label.cuda()
sr = model(input)
loss = criterion(sr, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if iteration % 10 == 0:
print(
"===> Epoch[{}]({}/{}): Loss: {:.6f}".format(epoch, iteration, len(training_data_loader), loss.data[0]))
if iteration % 1000 == 0:
number = opt.number
save_checkpoint_iter(model, number)
opt.number += 1
def adjust_learning_rate(optimizer, epoch):
lr = opt.lr * (0.1 ** (epoch // opt.step))
return lr
def save_checkpoint(model, epoch):
model_folder = "train/"
model_out_path = model_folder + "{}.pth".format(epoch)
state = {"epoch": epoch, "model": model}
if not os.path.exists(model_folder):
os.makedirs(model_folder)
torch.save(state, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
def save_checkpoint_iter(model, number):
model_folder = "train/ESPCN_iter/"
model_out_path = model_folder + "{}.pth".format(number)
state = {"epoch": number, "model": model}
if not os.path.exists(model_folder):
os.makedirs(model_folder)
torch.save(state, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
def main():
global opt, model
opt = parser.parse_args()
print(opt)
cuda = opt.cuda
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
opt.seed = 8787
print("Random Seed: ", opt.seed)
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
cudnn.benchmark = True
print("===> Loading datasets")
train_set = DatasetFromHdf5(opt.dataset)
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize,
shuffle=True)
print("===> Building model and loss function")
model = Net()
criterion = nn.MSELoss(size_average=False)
print("===> Setting GPU")
if cuda:
model = nn.DataParallel(model, device_ids=[0, 1, 2, 3]).cuda()
criterion = criterion.cuda()
else:
model = model.cpu()
if opt.pretrained:
if os.path.isfile(opt.pretrained):
print("=> loading model '{}'".format(opt.pretrained))
weights = torch.load(opt.pretrained)
model.load_state_dict(weights['model'].state_dict())
else:
print("=> no model found at '{}'".format(opt.pretrained))
print("===> Setting Optimizer")
optimizer = optim.Adam(model.parameters(), lr=opt.lr)
print("===> Training")
for epoch in range(opt.start_epoch, opt.nEpochs + 1):
train(training_data_loader, optimizer, model, criterion, epoch)
save_checkpoint(model, epoch)
if __name__ == "__main__":
main()