-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
15 changed files
with
2,213 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2023 mwxgod | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
import json | ||
|
||
class Config: | ||
def __init__(self, args): | ||
with open(args.config, "r", encoding="utf-8") as f: | ||
config = json.load(f) | ||
|
||
self.dataset = config["dataset"] | ||
self.dev_name = config["dev_name"] | ||
self.test_name = config["test_name"] | ||
self.train_name = config["train_name"] | ||
|
||
self.save_path = config["save_path"] | ||
self.predict_path = config["predict_path"] | ||
|
||
self.conv_num = config["conv_num"] | ||
self.att_redim = config["att_redim"] | ||
self.att_hidden_dim = config["att_hidden_dim"] | ||
self.dist_emb_size = config["dist_emb_size"] | ||
self.type_emb_size = config["type_emb_size"] | ||
self.lstm_hid_size = config["lstm_hid_size"] | ||
self.conv_hid_size = config["conv_hid_size"] | ||
self.bert_hid_size = config["bert_hid_size"] | ||
self.ffnn_hid_size = config["ffnn_hid_size"] | ||
|
||
|
||
self.emb_dropout = config["emb_dropout"] | ||
self.conv_dropout = config["conv_dropout"] | ||
self.out_dropout = config["out_dropout"] | ||
|
||
self.epochs = config["epochs"] | ||
self.batch_size = config["batch_size"] | ||
|
||
self.learning_rate = config["learning_rate"] | ||
self.weight_decay = config["weight_decay"] | ||
self.clip_grad_norm = config["clip_grad_norm"] | ||
self.bert_name = config["bert_name"] | ||
self.bert_learning_rate = config["bert_learning_rate"] | ||
self.warm_factor = config["warm_factor"] | ||
|
||
self.use_bert_last_4_layers = config["use_bert_last_4_layers"] | ||
|
||
self.seed = config["seed"] | ||
|
||
for k, v in args.__dict__.items(): | ||
if v is not None: | ||
self.__dict__[k] = v | ||
|
||
def __repr__(self): | ||
return "{}".format(self.__dict__.items()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
import json | ||
import torch | ||
from torch.utils.data import Dataset | ||
from torch.nn.utils.rnn import pad_sequence | ||
import numpy as np | ||
import prettytable as pt | ||
from gensim.models import KeyedVectors | ||
from transformers import AutoTokenizer | ||
import os | ||
import utils | ||
import requests | ||
os.environ["TOKENIZERS_PARALLELISM"] = "false" | ||
|
||
dis2idx = np.zeros((1000), dtype='int64') | ||
dis2idx[1] = 1 | ||
dis2idx[2:] = 2 | ||
dis2idx[4:] = 3 | ||
dis2idx[8:] = 4 | ||
dis2idx[16:] = 5 | ||
dis2idx[32:] = 6 | ||
dis2idx[64:] = 7 | ||
dis2idx[128:] = 8 | ||
dis2idx[256:] = 9 | ||
|
||
|
||
class Vocabulary(object): | ||
PAD = '<pad>' | ||
UNK = '<unk>' | ||
SUC = '<suc>' | ||
|
||
def __init__(self): | ||
self.label2id = {self.PAD: 0, self.SUC: 1} | ||
self.id2label = {0: self.PAD, 1: self.SUC} | ||
|
||
def add_label(self, label): | ||
label = label.lower() | ||
if label not in self.label2id: | ||
self.label2id[label] = len(self.label2id) | ||
self.id2label[self.label2id[label]] = label | ||
|
||
assert label == self.id2label[self.label2id[label]] | ||
|
||
def __len__(self): | ||
return len(self.token2id) | ||
|
||
def label_to_id(self, label): | ||
label = label.lower() | ||
return self.label2id[label] | ||
|
||
def id_to_label(self, i): | ||
return self.id2label[i] | ||
|
||
def collate_fn(data): | ||
bert_inputs, grid_labels, grid_mask2d, pieces2word, dist_inputs, sent_length, entity_text = map(list, zip(*data)) | ||
|
||
max_tok = np.max(sent_length) | ||
sent_length = torch.LongTensor(sent_length) | ||
max_pie = np.max([x.shape[0] for x in bert_inputs]) | ||
bert_inputs = pad_sequence(bert_inputs, True) | ||
batch_size = bert_inputs.size(0) | ||
|
||
def fill(data, new_data): | ||
for j, x in enumerate(data): | ||
new_data[j, :x.shape[0], :x.shape[1]] = x | ||
return new_data | ||
|
||
dis_mat = torch.zeros((batch_size, max_tok, max_tok), dtype=torch.long) | ||
dist_inputs = fill(dist_inputs, dis_mat) | ||
labels_mat = torch.zeros((batch_size, max_tok, max_tok), dtype=torch.long) | ||
grid_labels = fill(grid_labels, labels_mat) | ||
mask2d_mat = torch.zeros((batch_size, max_tok, max_tok), dtype=torch.bool) | ||
grid_mask2d = fill(grid_mask2d, mask2d_mat) | ||
sub_mat = torch.zeros((batch_size, max_tok, max_pie), dtype=torch.bool) | ||
pieces2word = fill(pieces2word, sub_mat) | ||
|
||
return bert_inputs, grid_labels, grid_mask2d, pieces2word, dist_inputs, sent_length, entity_text | ||
|
||
|
||
class RelationDataset(Dataset): | ||
def __init__(self, bert_inputs, grid_labels, grid_mask2d, pieces2word, dist_inputs, sent_length, entity_text): | ||
self.bert_inputs = bert_inputs | ||
self.grid_labels = grid_labels | ||
self.grid_mask2d = grid_mask2d | ||
self.pieces2word = pieces2word | ||
self.dist_inputs = dist_inputs | ||
self.sent_length = sent_length | ||
self.entity_text = entity_text | ||
|
||
def __getitem__(self, item): | ||
return torch.LongTensor(self.bert_inputs[item]), \ | ||
torch.LongTensor(self.grid_labels[item]), \ | ||
torch.LongTensor(self.grid_mask2d[item]), \ | ||
torch.LongTensor(self.pieces2word[item]), \ | ||
torch.LongTensor(self.dist_inputs[item]), \ | ||
self.sent_length[item], \ | ||
self.entity_text[item] | ||
|
||
def __len__(self): | ||
return len(self.bert_inputs) | ||
|
||
|
||
def process_bert(data, tokenizer, vocab): | ||
|
||
bert_inputs = [] | ||
grid_labels = [] | ||
grid_mask2d = [] | ||
dist_inputs = [] | ||
entity_text = [] | ||
pieces2word = [] | ||
sent_length = [] | ||
|
||
for index, instance in enumerate(data): | ||
if len(instance['sentence']) == 0: | ||
continue | ||
|
||
tokens = [tokenizer.tokenize(word) for word in instance['sentence']] | ||
pieces = [piece for pieces in tokens for piece in pieces] | ||
_bert_inputs = tokenizer.convert_tokens_to_ids(pieces) | ||
_bert_inputs = np.array([tokenizer.cls_token_id] + _bert_inputs + [tokenizer.sep_token_id]) | ||
|
||
length = len(instance['sentence']) | ||
if len(_bert_inputs)>512: | ||
print('index:', index) | ||
print('sentence:', ' '.join(instance['sentence'])) | ||
continue | ||
_grid_labels = np.zeros((length, length), dtype=np.int) | ||
_pieces2word = np.zeros((length, len(_bert_inputs)), dtype=np.bool) | ||
_dist_inputs = np.zeros((length, length), dtype=np.int) | ||
_grid_mask2d = np.ones((length, length), dtype=np.bool) | ||
|
||
if tokenizer is not None: | ||
start = 0 | ||
for i, pieces in enumerate(tokens): | ||
if len(pieces) == 0: | ||
continue | ||
pieces = list(range(start, start + len(pieces))) | ||
_pieces2word[i, pieces[0] + 1:pieces[-1] + 2] = 1 | ||
start += len(pieces) | ||
|
||
for k in range(length): | ||
_dist_inputs[k, :] += k | ||
_dist_inputs[:, k] -= k | ||
|
||
for i in range(length): | ||
for j in range(length): | ||
if _dist_inputs[i, j] < 0: | ||
_dist_inputs[i, j] = dis2idx[-_dist_inputs[i, j]] + 9 | ||
else: | ||
_dist_inputs[i, j] = dis2idx[_dist_inputs[i, j]] | ||
_dist_inputs[_dist_inputs == 0] = 19 | ||
|
||
for entity in instance["ner"]: | ||
index = entity["index"] | ||
for i in range(len(index)): | ||
if i + 1 >= len(index): | ||
break | ||
_grid_labels[index[i], index[i + 1]] = 1 | ||
_grid_labels[index[-1], index[0]] = vocab.label_to_id(entity["type"]) | ||
|
||
_entity_text = set([utils.convert_index_to_text(e["index"], vocab.label_to_id(e["type"])) | ||
for e in instance["ner"]]) | ||
|
||
sent_length.append(length) | ||
bert_inputs.append(_bert_inputs) | ||
grid_labels.append(_grid_labels) | ||
grid_mask2d.append(_grid_mask2d) | ||
dist_inputs.append(_dist_inputs) | ||
pieces2word.append(_pieces2word) | ||
entity_text.append(_entity_text) | ||
|
||
return bert_inputs, grid_labels, grid_mask2d, pieces2word, dist_inputs, sent_length, entity_text | ||
|
||
|
||
def fill_vocab(vocab, dataset): | ||
entity_num = 0 | ||
for instance in dataset: | ||
for entity in instance["ner"]: | ||
vocab.add_label(entity["type"]) | ||
entity_num += len(instance["ner"]) | ||
return entity_num | ||
|
||
|
||
def load_data_bert(config): | ||
with open('./data/{}/{}.json'.format(config.dataset, config.train_name), 'r', encoding='utf-8') as f: | ||
train_data = json.load(f) | ||
with open('./data/{}/{}.json'.format(config.dataset, config.dev_name), 'r', encoding='utf-8') as f: | ||
dev_data = json.load(f) | ||
with open('./data/{}/test.json'.format(config.dataset, config.test_name), 'r', encoding='utf-8') as f: | ||
test_data = json.load(f) | ||
|
||
tokenizer = AutoTokenizer.from_pretrained(config.bert_name, cache_dir="./cache/") | ||
|
||
vocab = Vocabulary() | ||
train_ent_num = fill_vocab(vocab, train_data) | ||
dev_ent_num = fill_vocab(vocab, dev_data) | ||
test_ent_num = fill_vocab(vocab, test_data) | ||
|
||
table = pt.PrettyTable([config.dataset, 'sentences', 'entities']) | ||
table.add_row(['train', len(train_data), train_ent_num]) | ||
table.add_row(['dev', len(dev_data), dev_ent_num]) | ||
table.add_row(['test', len(test_data), test_ent_num]) | ||
config.logger.info("\n{}".format(table)) | ||
|
||
config.label_num = len(vocab.label2id) | ||
config.vocab = vocab | ||
|
||
train_dataset = RelationDataset(*process_bert(train_data, tokenizer, vocab)) | ||
dev_dataset = RelationDataset(*process_bert(dev_data, tokenizer, vocab)) | ||
test_dataset = RelationDataset(*process_bert(test_data, tokenizer, vocab)) | ||
|
||
|
||
return (train_dataset, dev_dataset, test_dataset), (train_data, dev_data, test_data) | ||
|
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Empty file.
Oops, something went wrong.