Skip to content

Commit

Permalink
TST: add tests checking diophantine and memory overlap solvers
Browse files Browse the repository at this point in the history
  • Loading branch information
pv committed Aug 29, 2015
1 parent e3d71b2 commit 74c4454
Show file tree
Hide file tree
Showing 2 changed files with 332 additions and 84 deletions.
332 changes: 332 additions & 0 deletions numpy/core/tests/test_mem_overlap.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,332 @@
from __future__ import division, absolute_import, print_function

import sys
import itertools

import numpy as np
from numpy.testing import run_module_suite, assert_, assert_raises, assert_equal

from numpy.core.multiarray_tests import solve_diophantine, solve_may_share_memory
from numpy.lib.stride_tricks import as_strided

if sys.version_info[0] >= 3:
xrange = range


ndims = 2
size = 10
shape = tuple([size] * ndims)

MAY_SHARE_BOUNDS = 0
MAY_SHARE_EXACT = -1


def _indices_for_nelems(nelems):
"""Returns slices of length nelems, from start onwards, in direction sign."""

if nelems == 0:
return [size // 2] # int index

res = []
for step in (1, 2):
for sign in (-1, 1):
start = size // 2 - nelems * step * sign // 2
stop = start + nelems * step * sign
res.append(slice(start, stop, step * sign))

return res


def _indices_for_axis():
"""Returns (src, dst) pairs of indices."""

res = []
for nelems in (0, 2, 3):
ind = _indices_for_nelems(nelems)

# no itertools.product available in Py2.4
res.extend([(a, b) for a in ind for b in ind]) # all assignments of size "nelems"

return res


def _indices(ndims):
"""Returns ((axis0_src, axis0_dst), (axis1_src, axis1_dst), ... ) index pairs."""

ind = _indices_for_axis()

# no itertools.product available in Py2.4

res = [[]]
for i in range(ndims):
newres = []
for elem in ind:
for others in res:
newres.append([elem] + others)
res = newres

return res


def _check_assignment(srcidx, dstidx):
"""Check assignment arr[dstidx] = arr[srcidx] works."""

arr = np.arange(np.product(shape)).reshape(shape)

cpy = arr.copy()

cpy[dstidx] = arr[srcidx]
arr[dstidx] = arr[srcidx]

assert np.all(arr == cpy), 'assigning arr[%s] = arr[%s]' % (dstidx, srcidx)


def test_overlapping_assignments():
"""Test automatically generated assignments which overlap in memory."""

inds = _indices(ndims)

for ind in inds:
srcidx = tuple([a[0] for a in ind])
dstidx = tuple([a[1] for a in ind])

yield _check_assignment, srcidx, dstidx


def test_diophantine_fuzz():
# Fuzz test the diophantine solver
rng = np.random.RandomState(1234)

max_int = np.iinfo(np.intp).max

for ndim in range(10):
feasible_count = 0
infeasible_count = 0

min_count = 500//(ndim + 1)

numbers = []
while min(feasible_count, infeasible_count) < min_count:
# Ensure big and small integer problems
A_max = 1 + rng.randint(0, 11)**6
U_max = rng.randint(0, 11)**6

A_max = min(max_int, A_max)
U_max = min(max_int-1, U_max)

A = tuple(rng.randint(1, A_max+1) for j in range(ndim))
U = tuple(rng.randint(0, U_max+2) for j in range(ndim))

b_ub = min(max_int-2, sum(a*ub for a, ub in zip(A, U)))
b = rng.randint(-1, b_ub+2)

if ndim == 0 and feasible_count < min_count:
b = 0

X = solve_diophantine(A, U, b)

if X is None:
# Check the simplified decision problem agrees
X_simplified = solve_diophantine(A, U, b, simplify=1)
assert X_simplified is None, (A, U, b, X_simplified)

# Check no solution exists (provided the problem is
# small enough so that brute force checking doesn't
# take too long)
try:
ranges = tuple(xrange(0, a*ub+1, a) for a, ub in zip(A, U))
except OverflowError:
# xrange on 32-bit Python 2 may overflow
continue

size = 1
for r in ranges:
size *= len(r)
if size < 100000:
assert_(not any(sum(w) == b for w in itertools.product(*ranges)))
infeasible_count += 1
else:
# Check the simplified decision problem agrees
X_simplified = solve_diophantine(A, U, b, simplify=1)
assert X_simplified is not None, (A, U, b, X_simplified)

# Check validity
assert_(sum(a*x for a, x in zip(A, X)) == b)
assert_(all(0 <= x <= ub for x, ub in zip(X, U)))
feasible_count += 1


def test_diophantine_overflow():
# Smoke test integer overflow detection
max_intp = np.iinfo(np.intp).max
max_int64 = np.iinfo(np.int64).max

if max_int64 <= max_intp:
# The Python wrapper only takes intp inputs, but the solver
# works internally in 64-bit
A = (2, 3)
U = (max_int64//2, max_int64//6)
b = max_int64 - 1

assert_raises(OverflowError, solve_diophantine, A, U, b)


def check_may_share_memory_exact(a, b):
got = solve_may_share_memory(a, b, max_work=MAY_SHARE_EXACT)

assert_equal(np.may_share_memory(a, b),
solve_may_share_memory(a, b, max_work=MAY_SHARE_BOUNDS))

a.fill(0)
b.fill(0)
a.fill(1)
exact = b.any()

err_msg = ""
if got != exact:
err_msg = " " + "\n ".join([
"base_a - base_b = %r" % (a.__array_interface__['data'][0] - b.__array_interface__['data'][0],),
"shape_a = %r" % (a.shape,),
"shape_b = %r" % (b.shape,),
"strides_a = %r" % (a.strides,),
"strides_b = %r" % (b.strides,),
"size_a = %r" % (a.size,),
"size_b = %r" % (b.size,)
])

assert_equal(got, exact, err_msg=err_msg)


def test_may_share_memory_manual():
# Manual test cases for may_share_memory

# Base arrays
xs0 = [
np.zeros([13, 21, 23, 22], dtype=np.int8),
np.zeros([13, 21, 23*2, 22], dtype=np.int8)[:,:,::2,:]
]

# Generate all negative stride combinations
xs = []
for x in xs0:
for ss in itertools.product(*(([slice(None), slice(None, None, -1)],)*4)):
xp = x[ss]
xs.append(xp)

for x in xs:
# The default is a simple extent check
assert_(solve_may_share_memory(x[:,0,:], x[:,1,:]))
assert_(solve_may_share_memory(x[:,0,:], x[:,1,:], max_work=None))

# Exact checks
check_may_share_memory_exact(x[:,0,:], x[:,1,:])
check_may_share_memory_exact(x[:,::7], x[:,3::3])

try:
xp = x.ravel()
if xp.flags.owndata:
continue
xp = xp.view(np.int16)
except ValueError:
continue

# 0-size arrays cannot overlap
check_may_share_memory_exact(x.ravel()[6:6],
xp.reshape(13, 21, 23, 11)[:,::7])

# Test itemsize is dealt with
check_may_share_memory_exact(x[:,::7],
xp.reshape(13, 21, 23, 11))
check_may_share_memory_exact(x[:,::7],
xp.reshape(13, 21, 23, 11)[:,3::3])
check_may_share_memory_exact(x.ravel()[6:7],
xp.reshape(13, 21, 23, 11)[:,::7])

# Check unit size
x = np.zeros([1], dtype=np.int8)
check_may_share_memory_exact(x, x)
check_may_share_memory_exact(x, x.copy())


def check_may_share_memory_easy_fuzz(get_max_work, same_steps, min_count):
# Check that overlap problems with common strides are solved with
# little work.
x = np.zeros([17,34,71,97], dtype=np.int16)

rng = np.random.RandomState(1234)

def random_slice(n, step):
start = rng.randint(0, n+1)
stop = rng.randint(start, n+1)
if rng.randint(0, 2) == 0:
stop, start = start, stop
step *= -1
return slice(start, stop, step)

feasible = 0
infeasible = 0

while min(feasible, infeasible) < min_count:
steps = tuple(rng.randint(1, 11) if rng.randint(0, 5) == 0 else 1
for j in range(x.ndim))
if same_steps:
steps2 = steps
else:
steps2 = tuple(rng.randint(1, 11) if rng.randint(0, 5) == 0 else 1
for j in range(x.ndim))

t1 = np.arange(x.ndim)
rng.shuffle(t1)

t2 = np.arange(x.ndim)
rng.shuffle(t2)

s1 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps))
s2 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps2))
a = x[s1].transpose(t1)
b = x[s2].transpose(t2)

bounds_overlap = solve_may_share_memory(a, b)
may_share_answer = np.may_share_memory(a, b)
easy_answer = solve_may_share_memory(a, b, max_work=get_max_work(a, b))
exact_answer = solve_may_share_memory(a, b, max_work=MAY_SHARE_EXACT)

if easy_answer != exact_answer:
# assert_equal is slow...
assert_equal(easy_answer, exact_answer, err_msg=repr((s1, s2)))

if may_share_answer != bounds_overlap:
assert_equal(may_share_answer, bounds_overlap,
err_msg=repr((s1, s2)))

if bounds_overlap:
if exact_answer:
feasible += 1
else:
infeasible += 1


def test_may_share_memory_easy_fuzz():
# Check that overlap problems with common strides are always
# solved with little work.

check_may_share_memory_easy_fuzz(get_max_work=lambda a, b: 1,
same_steps=True,
min_count=2000)


def test_may_share_memory_harder_fuzz():
# Overlap problems with not necessarily common strides take more
# work.
#
# The work bound below can't be reduced much. Harder problems can
# also exist but not be detected here, as the set of problems
# comes from RNG.

check_may_share_memory_easy_fuzz(get_max_work=lambda a, b: max(a.size, b.size)//2,
same_steps=False,
min_count=2000)


if __name__ == "__main__":
run_module_suite()
Loading

0 comments on commit 74c4454

Please sign in to comment.