Skip to content

Magic-meet/Awesome-Dataset-Distillation

ย 
ย 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Awesome Dataset Distillation

Awesome Contrib PaperNum Stars Forks

Awesome Dataset Distillation provides the most comprehensive and detailed information on the Dataset Distillation field.

Dataset distillation is the task of synthesizing a small dataset such that models trained on it achieve high performance on the original large dataset. A dataset distillation algorithm takes as input a large real dataset to be distilled (training set), and outputs a small synthetic distilled dataset, which is evaluated via testing models trained on this distilled dataset on a separate real dataset (validation/test set). A good small distilled dataset is not only useful in dataset understanding, but has various applications (e.g., continual learning, privacy, neural architecture search, etc.). This task was first introduced in the paper Dataset Distillation [Tongzhou Wang et al., '18], along with a proposed algorithm using backpropagation through optimization steps. Then the task was first extended to the real-world datasets in the paper Medical Dataset Distillation [Guang Li et al., '19], which also explored the privacy preservation possibilities of dataset distillation. In the paper Dataset Condensation [Bo Zhao et al., '20], gradient matching was first introduced and greatly promoted the development of the dataset distillation field.

In recent years (2022-now), dataset distillation has gained increasing attention in the research community, across many institutes and labs. More papers are now being published each year. These wonderful researches have been constantly improving dataset distillation and exploring its various variants and applications.

This project is curated and maintained by Guang Li, Bo Zhao, and Tongzhou Wang.

  • ๐ŸŒ Project Page
  • :octocat: Code
  • ๐Ÿ“– bibtex

Latest Updates

Contents

  • 1st CVPR Workshop on Dataset Distillation (Saeed Vahidian et al., CVPR 2024) ๐ŸŒ
  • The First Dataset Distillation Challenge (Kai Wang & Ahmad Sajedi et al., ECCV 2024) ๐ŸŒ :octocat:

Applications

Survey

Benchmark

Media Coverage

Star History

Star History Chart

Citing Awesome Dataset Distillation

If you find this project useful for your research, please use the following BibTeX entry.

@misc{li2022awesome,
  author={Li, Guang and Zhao, Bo and Wang, Tongzhou},
  title={Awesome Dataset Distillation},
  howpublished={\url{https://github.com/Guang000/Awesome-Dataset-Distillation}},
  year={2022}
}

Acknowledgments

We would like to express our heartfelt thanks to Nikolaos Tsilivis, Wei Jin, Yongchao Zhou, Noveen Sachdeva, Can Chen, Guangxiang Zhao, Shiye Lei, Xinchao Wang, Dmitry Medvedev, Seungjae Shin, Jiawei Du, Yidi Jiang, Xindi Wu, Guangyi Liu, Yilun Liu, Kai Wang, Yue Xu, Anjia Cao, Jianyang Gu, Yuanzhen Feng, Peng Sun, Ahmad Sajedi, Zhihao Sui, Ziyu Wang, Haoyang Liu, Eduardo Montesuma, Shengbo Gong, Zheng Zhou, Zhenghao Zhao, Duo Su, Tianhang Zheng, Shijie Ma, Wei Wei, Yantai Yang, Shaobo Wang, Xinhao Zhong, Zhiqiang Shen and Cong Cong for their valuable suggestions and contributions.

The Homepage of Awesome Dataset Distillation was designed and maintained by Longzhen Li.

About

A curated list of awesome papers on dataset distillation and related applications.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • HTML 91.2%
  • CSS 8.8%