Skip to content

Commit

Permalink
Roll forward tensorflow@ab0ca4b. The internal test that it broke has …
Browse files Browse the repository at this point in the history
…been fixed.

PiperOrigin-RevId: 401913101
Change-Id: I67f095899187e38101fbb10289c5e444b0a9e8c0
  • Loading branch information
reedwm authored and tensorflower-gardener committed Oct 9, 2021
1 parent 79e495c commit da4aad5
Show file tree
Hide file tree
Showing 6 changed files with 197 additions and 5 deletions.
47 changes: 47 additions & 0 deletions tensorflow/core/kernels/maxpooling_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -325,6 +325,14 @@ class MaxPoolingGradOp : public OpKernel {
if (!context->status().ok()) {
return;
}
OP_REQUIRES(context, tensor_out.shape() == params.forward_output_shape(),
errors::InvalidArgument("Expected orig_output shape to be ",
params.forward_output_shape(),
", but got ", tensor_out.shape()));
OP_REQUIRES(context, out_backprop.shape() == params.forward_output_shape(),
errors::InvalidArgument("Expected grad shape to be ",
params.forward_output_shape(),
", but got ", out_backprop.shape()));

Tensor* output = nullptr;
OP_REQUIRES_OK(context, context->forward_input_or_allocate_output(
Expand Down Expand Up @@ -538,6 +546,18 @@ class MaxPoolingGradGradOp : public OpKernel {
/*explicit_paddings=*/{},
FORMAT_NHWC,
tensor_in.shape()};
if (!context->status().ok()) {
return;
}
OP_REQUIRES(context, tensor_out.shape() == params.forward_output_shape(),
errors::InvalidArgument("Expected orig_output shape to be ",
params.forward_output_shape(),
", but got ", tensor_out.shape()));
OP_REQUIRES(
context, out_grad_backprop.shape() == tensor_in.shape(),
errors::InvalidArgument("Expected grad shape to be ", tensor_in.shape(),
", but got ", out_grad_backprop.shape()));

Tensor* output = nullptr;
OP_REQUIRES_OK(context, context->forward_input_or_allocate_output(
{2}, 0, tensor_out.shape(), &output));
Expand Down Expand Up @@ -742,6 +762,17 @@ class MaxPoolingGradGradOp<Eigen::GpuDevice, T> : public OpKernel {
/*explicit_paddings=*/{},
data_format_,
tensor_in.shape()};
if (!context->status().ok()) {
return;
}
OP_REQUIRES(context, tensor_out.shape() == params.forward_output_shape(),
errors::InvalidArgument("Expected orig_output shape to be ",
params.forward_output_shape(),
", but got ", tensor_out.shape()));
OP_REQUIRES(
context, out_grad_backprop.shape() == tensor_in.shape(),
errors::InvalidArgument("Expected grad shape to be ", tensor_in.shape(),
", but got ", out_grad_backprop.shape()));

functor::MaxPoolGradBackwardNoMask<T>()(
data_format_, tensor_in.flat<T>().data(), tensor_out.flat<T>().data(),
Expand Down Expand Up @@ -1096,6 +1127,14 @@ class MaxPoolingGradWithArgmaxOp : public OpKernel {
if (!context->status().ok()) {
return;
}
OP_REQUIRES(context, grad_in.shape() == params.forward_output_shape(),
errors::InvalidArgument("Expected grad shape to be ",
params.forward_output_shape(),
", but got ", grad_in.shape()));
OP_REQUIRES(context, argmax.shape() == params.forward_output_shape(),
errors::InvalidArgument("Expected argmax shape to be ",
params.forward_output_shape(),
", but got ", argmax.shape()));

TensorShape out_shape({params.tensor_in_batch, params.tensor_in_rows,
params.tensor_in_cols, params.depth});
Expand Down Expand Up @@ -1156,6 +1195,14 @@ class MaxPoolingGradGradWithArgmaxOp : public OpKernel {
if (!context->status().ok()) {
return;
}
OP_REQUIRES(
context, grad_in.shape() == tensor_in.shape(),
errors::InvalidArgument("Expected grad shape to be ", tensor_in.shape(),
", but got ", grad_in.shape()));
OP_REQUIRES(context, argmax.shape() == params.forward_output_shape(),
errors::InvalidArgument("Expected argmax shape to be ",
params.forward_output_shape(),
", but got ", argmax.shape()));

TensorShape out_shape({params.tensor_in_batch, params.out_height,
params.out_width, params.depth});
Expand Down
21 changes: 21 additions & 0 deletions tensorflow/core/kernels/pooling_ops_3d.cc
Original file line number Diff line number Diff line change
Expand Up @@ -366,6 +366,19 @@ class MaxPooling3dGradOp : public OpKernel {

OP_REQUIRES_OK(context, Get3dOutputSize(input_size, window, stride,
padding_, &out, &padding));

const int64_t depth = GetTensorDim(tensor_in, data_format_, 'C');
const int64_t in_batch = GetTensorDim(tensor_in, data_format_, 'N');
TensorShape out_shape = ShapeFromFormat(data_format_, in_batch,
{{out[2], out[1], out[0]}}, depth);
OP_REQUIRES(
context, tensor_out.shape() == out_shape,
errors::InvalidArgument("Expected orig_output shape to be ", out_shape,
", but got ", tensor_out.shape()));
OP_REQUIRES(context, out_backprop.shape() == out_shape,
errors::InvalidArgument("Expected grad shape to be ", out_shape,
", but got ", out_backprop.shape()));

LaunchMaxPooling3dGradOp<Device, T>::launch(
context, tensor_in, tensor_out, out_backprop, window, stride, out,
padding, data_format_, input_backprop);
Expand Down Expand Up @@ -712,6 +725,14 @@ class MaxPooling3dGradGradOp : public OpKernel {
Pool3dParameters params{context, ksize_, stride_,
padding_, data_format_, tensor_in.shape()};
if (!context->status().ok()) return; // params is invalid
OP_REQUIRES(context, tensor_out.shape() == params.forward_output_shape(),
errors::InvalidArgument("Expected orig_output shape to be ",
params.forward_output_shape(),
", but got ", tensor_out.shape()));
OP_REQUIRES(
context, out_grad_backprop.shape() == tensor_in.shape(),
errors::InvalidArgument("Expected grad shape to be ", tensor_in.shape(),
", but got ", out_grad_backprop.shape()));

Tensor* output = nullptr;
OP_REQUIRES_OK(context, context->forward_input_or_allocate_output(
Expand Down
10 changes: 10 additions & 0 deletions tensorflow/core/kernels/pooling_ops_common.cc
Original file line number Diff line number Diff line change
Expand Up @@ -465,6 +465,16 @@ void DnnPoolingGradOp<T>::Compute(
if (!context->status().ok()) {
return;
}
if (tensor_out) {
OP_REQUIRES(context, tensor_out->shape() == params.forward_output_shape(),
errors::InvalidArgument("Expected orig_output shape to be ",
params.forward_output_shape(),
", but got ", tensor_out->shape()));
}
OP_REQUIRES(context, out_backprop.shape() == params.forward_output_shape(),
errors::InvalidArgument("Expected grad shape to be ",
params.forward_output_shape(),
", but got ", out_backprop.shape()));

TensorFormat transformed_input_data_format = data_format;

Expand Down
5 changes: 0 additions & 5 deletions tensorflow/core/kernels/pooling_ops_common.h
Original file line number Diff line number Diff line change
Expand Up @@ -83,11 +83,6 @@ struct PoolParameters {
TensorFormat data_format;
};

// Checks if the sizes of the paddings are less than the size of window.
// This is required for MaxPool because it pads with -inf, so the pooling
// window cannot fully cover the padded area.
Status CheckPaddingSize(PoolParameters& params);

// An implementation of MaxPooling (forward).
// TODO (yongtang): Remove MaxPoolingOp and use MaxPoolingV2Op,
// QuantizedMaxPoolingOp depends on MaxPoolingOp so keep intact for now
Expand Down
42 changes: 42 additions & 0 deletions tensorflow/python/kernel_tests/pooling_ops_3d_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,13 @@

import numpy as np

from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import errors
from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_nn_ops
from tensorflow.python.ops import gradient_checker
from tensorflow.python.ops import gradients_impl
from tensorflow.python.ops import nn_ops
Expand Down Expand Up @@ -515,6 +519,44 @@ def testMaxPool3DZeroPoolSize(self):
pool_3d = f(input_tensor, ksize=[2, 2, 0], strides=1, padding="VALID")
self.evaluate(pool_3d)

def testMaxPoolGradEagerShapeErrors(self):
with context.eager_mode():
orig_in = array_ops.ones((1, 1, 1, 1, 1))

# Test invalid orig_out shape
orig_out = array_ops.ones((1, 1, 1, 1, 2))
grad = array_ops.ones((1, 1, 1, 1, 1))
with self.assertRaisesRegex(
errors_impl.InvalidArgumentError,
r"Expected orig_output shape to be \[1,1,1,1,1\], but got "
r"\[1,1,1,1,2\]"):
gen_nn_ops.max_pool3d_grad(
orig_in, orig_out, grad, ksize=[1, 1, 1, 1, 1],
strides=[1, 1, 1, 1, 1], padding="VALID")
with self.assertRaisesRegex(
errors_impl.InvalidArgumentError,
r"Expected orig_output shape to be \[1,1,1,1,1\], but got "
r"\[1,1,1,1,2\]"):
gen_nn_ops.max_pool3d_grad_grad(
orig_in, orig_out, grad, ksize=[1, 1, 1, 1, 1],
strides=[1, 1, 1, 1, 1], padding="VALID")

# Test invalid grad shape
orig_out = array_ops.ones((1, 1, 1, 1, 1))
grad = array_ops.ones((1, 1, 1, 1, 2))
with self.assertRaisesRegex(
errors_impl.InvalidArgumentError,
r"Expected grad shape to be \[1,1,1,1,1\], but got \[1,1,1,1,2\]"):
gen_nn_ops.max_pool3d_grad(
orig_in, orig_out, grad, ksize=[1, 1, 1, 1, 1],
strides=[1, 1, 1, 1, 1], padding="VALID")
with self.assertRaisesRegex(
errors_impl.InvalidArgumentError,
r"Expected grad shape to be \[1,1,1,1,1\], but got \[1,1,1,1,2\]"):
gen_nn_ops.max_pool3d_grad_grad(
orig_in, orig_out, grad, ksize=[1, 1, 1, 1, 1],
strides=[1, 1, 1, 1, 1], padding="VALID")


if __name__ == "__main__":
test.main()
77 changes: 77 additions & 0 deletions tensorflow/python/kernel_tests/pooling_ops_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -618,6 +618,7 @@ def testMaxPoolExplicitPaddingAdvanced(self, **kwargs):

@parameterized.parameters(
GetTestConfigsDicts(nn_ops.max_pool, nn_ops.max_pool_v2))
@test_util.xla_allow_fallback("XLA doesn't support explicit padding")
@test_util.run_deprecated_v1
def testMaxPoolNegativeInputExpPaddingAdv(self, **kwargs):
expected_output = [-1, -1, -3, -5, -7, -7, -9, -11, -19, -19, -21, -23, -31,
Expand Down Expand Up @@ -2390,6 +2391,82 @@ def testExplicitPaddingBatch(self):
explicit_paddings=[1, 1, 1, 1, 1, 1, 0, 0],
data_format="NHWC"))

def testMaxPoolGradEagerShapeErrors(self):
with context.eager_mode():
orig_in = array_ops.ones((1, 1, 1, 1))

# Test invalid orig_out shape
orig_out = array_ops.ones((1, 1, 1, 2))
grad = array_ops.ones((1, 1, 1, 1))
with self.assertRaisesRegex(
errors_impl.InvalidArgumentError,
r"Expected orig_output shape to be \[1,1,1,1\], but got \[1,1,1,2\]"):
gen_nn_ops.max_pool_grad(
orig_in, orig_out, grad, ksize=[1, 1, 1, 1], strides=[1, 1, 1, 1],
padding="VALID")
with self.assertRaisesRegex(
errors_impl.InvalidArgumentError,
r"Expected orig_output shape to be \[1,1,1,1\], but got \[1,1,1,2\]"):
gen_nn_ops.max_pool_grad_grad(
orig_in, orig_out, grad, ksize=[1, 1, 1, 1], strides=[1, 1, 1, 1],
padding="VALID")

# Test invalid grad shape
orig_out = array_ops.ones((1, 1, 1, 1))
grad = array_ops.ones((1, 1, 1, 2))
with self.assertRaisesRegex(
errors_impl.InvalidArgumentError,
r"Expected grad shape to be \[1,1,1,1\], but got \[1,1,1,2\]"):
gen_nn_ops.max_pool_grad(
orig_in, orig_out, grad, ksize=[1, 1, 1, 1], strides=[1, 1, 1, 1],
padding="VALID")
with self.assertRaisesRegex(
errors_impl.InvalidArgumentError,
r"Expected grad shape to be \[1,1,1,1\], but got \[1,1,1,2\]"):
gen_nn_ops.max_pool_grad_grad(
orig_in, orig_out, grad, ksize=[1, 1, 1, 1], strides=[1, 1, 1, 1],
padding="VALID")

def testMaxPoolGradWithArgmaxEagerShapeErrors(self):
with context.eager_mode():
inp = array_ops.ones((1, 1, 1, 1))

# Test invalid grad shape
grad = array_ops.ones((1, 1, 1, 2))
argmax = array_ops.zeros((1, 1, 1, 1), dtype=dtypes.int64)
with self.assertRaisesRegex(
errors_impl.InvalidArgumentError,
r"Expected grad shape to be \[1,1,1,1\], but got \[1,1,1,2\]"):
gen_nn_ops.max_pool_grad_with_argmax(
inp, grad, argmax, ksize=[1, 1, 1, 1], strides=[1, 1, 1, 1],
padding="VALID")
# max_pool_grad_grad_with_argmax is only implemented for GPUs
if test.is_gpu_available():
with self.assertRaisesRegex(
errors_impl.InvalidArgumentError,
r"Expected grad shape to be \[1,1,1,1\], but got \[1,1,1,2\]"):
gen_nn_ops.max_pool_grad_grad_with_argmax(
inp, grad, argmax, ksize=[1, 1, 1, 1], strides=[1, 1, 1, 1],
padding="VALID")

# Test invalid argmax shape
grad = array_ops.ones((1, 1, 1, 1))
argmax = array_ops.ones((1, 1, 1, 2), dtype=dtypes.int64)
with self.assertRaisesRegex(
errors_impl.InvalidArgumentError,
r"Expected argmax shape to be \[1,1,1,1\], but got \[1,1,1,2\]"):
gen_nn_ops.max_pool_grad_with_argmax(
inp, grad, argmax, ksize=[1, 1, 1, 1], strides=[1, 1, 1, 1],
padding="VALID")
# max_pool_grad_grad_with_argmax is only implemented for GPUs
if test.is_gpu_available():
with self.assertRaisesRegex(
errors_impl.InvalidArgumentError,
r"Expected argmax shape to be \[1,1,1,1\], but got \[1,1,1,2\]"):
gen_nn_ops.max_pool_grad_grad_with_argmax(
inp, grad, argmax, ksize=[1, 1, 1, 1], strides=[1, 1, 1, 1],
padding="VALID")


def GetMaxPoolFwdTest(input_size, filter_size, strides, padding):

Expand Down

0 comments on commit da4aad5

Please sign in to comment.