Skip to content

MartinSavc/3DUNetOvaryFollicleDetectionExt1Ext2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

3D U-Net ovary and follicle detection, Ext1 and Ext2

Dependencies

The code requires the following libraries:

  • tensorflow 2.x
  • albumentations
  • matplotlib
  • numpy
  • scipy
  • scikit-image
  • h5py
  • nilearn
  • nibabel

USOVA Dataset

The dataset is available here.

Network training (extension 1 or 2)

Training command:

python train_USOVA3D_unet_ext.py \
	-m model_ext1.h5 \
	-r 1e-3 \
	--numFilt 8 \
	--extensionType ext1 \
	-e 200 \
	--trainData trainSet.h5

will train a model with learing rate 1-e3, 8 filters on the first U-net level, with extension ext1. It will train for 200 epochs with the data loaded from trainSet.h5. The model will be saved to model_ext1.h5.

To evaluate on the training data:

python predictALL_USOVA3D_unet_ext.py \
	-m model_ext1.h5 \
	--outOvaries predictionsOvaries.h5 \
	--outFollicles predictionsFollicles.h5 \
	--testData testSet.h5

Publication

If you use this code or models in your publication please cite:

  • B. Potočnik, M. Šavc, Deeply-Supervised 3D Convolutional Neural Networks for Automated Ovary and Follicle Detection from Ultrasound Volumes , Applied Sciences, 2022, submitted.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages