The code requires the following libraries:
- tensorflow 2.x
- albumentations
- matplotlib
- numpy
- scipy
- scikit-image
- h5py
- nilearn
- nibabel
The dataset is available here.
Training command:
python train_USOVA3D_unet_ext.py \
-m model_ext1.h5 \
-r 1e-3 \
--numFilt 8 \
--extensionType ext1 \
-e 200 \
--trainData trainSet.h5
will train a model with learing rate 1-e3, 8 filters on the first U-net level, with extension ext1. It will train for 200 epochs with the data loaded from trainSet.h5. The model will be saved to model_ext1.h5.
To evaluate on the training data:
python predictALL_USOVA3D_unet_ext.py \
-m model_ext1.h5 \
--outOvaries predictionsOvaries.h5 \
--outFollicles predictionsFollicles.h5 \
--testData testSet.h5
If you use this code or models in your publication please cite:
- B. Potočnik, M. Šavc, Deeply-Supervised 3D Convolutional Neural Networks for Automated Ovary and Follicle Detection from Ultrasound Volumes , Applied Sciences, 2022, submitted.