Skip to content

Commit

Permalink
[Docs] Add 2s-AGCN in Updates. (open-mmlab#1289)
Browse files Browse the repository at this point in the history
* master

* master 0721

* add README

* 1125 add undates

* 1125 add zh update
  • Loading branch information
gengenkai authored Nov 25, 2021
1 parent 2ef6903 commit 26b4b93
Show file tree
Hide file tree
Showing 2 changed files with 2 additions and 0 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@ The master branch works with **PyTorch 1.3+**.

## Updates

- (2021-11-24) We support **2s-AGCN** on NTU60 XSub, achieve 86.82% Top-1 accuracy on joint stream and 87.91% Top-1 accuracy on bone stream respectively.
- (2021-10-29) We provide a demo for skeleton-based and rgb-based spatio-temporal detection and action recognition (demo/demo_video_structuralize.py).
- (2021-10-26) We train and test **ST-GCN** on NTU60 with 3D keypoint annotations, achieve 84.61% Top-1 accuracy (higher than 81.5% in the [paper](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPaper/17135)).
- (2021-10-25) We provide a script(tools/data/skeleton/gen_ntu_rgbd_raw.py) to convert the NTU60 and NTU120 3D raw skeleton data to our format.
Expand Down
1 change: 1 addition & 0 deletions README_zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@ MMAction2 是一款基于 PyTorch 的视频理解开源工具箱,是 [OpenMMLa

## 更新记录

- (2021-11-24) 在 NTU60 XSub 上支持 **2s-AGCN**, 在 joint stream 和 bone stream 上分别达到 86.82% 和 87.91% 的识别准确率。
- (2021-10-29) 支持基于 skeleton 模态和 rgb 模态的时空动作检测和行为识别 demo (demo/demo_video_structuralize.py)。
- (2021-10-26) 在 NTU60 3d 关键点标注数据集上训练测试 **STGCN**, 可达到 84.61% (高于 [paper](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPaper/17135) 中的 81.5%) 的识别准确率。
- (2021-10-25) 提供将 NTU60 和 NTU120 的 3d 骨骼点数据转换成我们项目的格式的脚本(tools/data/skeleton/gen_ntu_rgbd_raw.py)。
Expand Down

0 comments on commit 26b4b93

Please sign in to comment.