forked from 920232796/bert_seq2seq
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
support english gpt2 and generate story example.
- Loading branch information
Showing
4 changed files
with
185 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
|
||
import torch | ||
from tqdm import tqdm | ||
import torch.nn as nn | ||
from torch.optim import Adam | ||
import numpy as np | ||
import os | ||
import json | ||
import time | ||
import glob | ||
import pandas as pd | ||
import bert_seq2seq | ||
from torch.utils.data import Dataset, DataLoader | ||
from bert_seq2seq.utils import load_gpt | ||
from transformers import AutoTokenizer | ||
tokenizer = AutoTokenizer.from_pretrained("pranavpsv/gpt2-genre-story-generator") | ||
word2ix = tokenizer.get_vocab() | ||
# print(len(word2ix)) | ||
# print(word2ix["<EOS>"]) | ||
# print(word2ix["<PAD>"]) | ||
# print(tokenizer.eos_token_id) | ||
|
||
data_path = "./corpus/英文讲故事数据集/train.csv" | ||
model_path = "./state_dict/english_gpt_model/english_gpt_story.bin" | ||
model_save_path = "./state_dict/gpt_auto_story.bin" | ||
batch_size = 8 | ||
lr = 1e-5 | ||
maxlen = 256 | ||
|
||
def load_data(): | ||
sents_src = [] | ||
sents_tgt = [] | ||
df = pd.read_csv(data_path) | ||
for i, row in df.iterrows(): | ||
sents_src.append(row[1]) | ||
tgt = "" | ||
for j in range(2, 7): | ||
tgt += row[j] | ||
sents_tgt.append(tgt) | ||
|
||
return sents_src, sents_tgt | ||
|
||
class GPTDataset(Dataset): | ||
""" | ||
针对特定数据集,定义一个相关的取数据的方式 | ||
""" | ||
|
||
def __init__(self): | ||
## 一般init函数是加载所有数据 | ||
super(GPTDataset, self).__init__() | ||
## 拿到所有文件名字 | ||
self.sents_src, self.sents_tgt = load_data() | ||
self.tokenizer = tokenizer | ||
|
||
def __getitem__(self, i): | ||
## 得到单个数据 | ||
|
||
src_d = self.sents_src[i] | ||
tgt_d = self.sents_tgt[i] | ||
src_ids = self.tokenizer.encode(src_d) + [self.tokenizer.eos_token_id] | ||
tgt_ids = self.tokenizer.encode(tgt_d) + [self.tokenizer.eos_token_id] | ||
output = { | ||
"token_ids": src_ids + tgt_ids, | ||
} | ||
return output | ||
|
||
|
||
|
||
def __len__(self): | ||
return len(self.sents_src) | ||
|
||
|
||
def collate_fn(batch): | ||
""" | ||
动态padding, batch为一部分sample | ||
""" | ||
|
||
def padding(indice, max_length, pad_idx=0): | ||
""" | ||
pad 函数 | ||
""" | ||
pad_indice = [item + [pad_idx] * max(0, max_length - len(item)) for item in indice] | ||
return torch.tensor(pad_indice) | ||
|
||
token_ids = [data["token_ids"] for data in batch] | ||
max_length = max([len(t) for t in token_ids]) | ||
|
||
token_ids_padded = padding(token_ids, max_length, pad_idx=word2ix["<PAD>"]) | ||
token_target_padded = token_ids_padded.clone() | ||
token_target_padded[token_target_padded == word2ix["<PAD>"]] = -100 | ||
return token_ids_padded, token_target_padded | ||
|
||
|
||
class Trainer: | ||
def __init__(self): | ||
# 判断是否有可用GPU | ||
# self.device = torch.device("cpu") | ||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
print("device: " + str(self.device)) | ||
# 定义模型 | ||
self.model = load_gpt(word2ix, tokenizer=tokenizer) | ||
self.model.load_pretrain_params(model_path) | ||
# 加载已经训练好的模型,继续训练 | ||
|
||
# 将模型发送到计算设备(GPU或CPU) | ||
self.model.set_device(self.device) | ||
# 声明需要优化的参数 | ||
self.optim_parameters = list(self.model.parameters()) | ||
self.optimizer = torch.optim.Adam(self.optim_parameters, lr=lr, weight_decay=1e-3) | ||
# 声明自定义的数据加载器 | ||
dataset = GPTDataset() | ||
self.dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn) | ||
|
||
def train(self, epoch): | ||
# 一个epoch的训练 | ||
self.model.train() | ||
self.iteration(epoch, dataloader=self.dataloader, train=True) | ||
|
||
def save(self, save_path): | ||
""" | ||
保存模型 | ||
""" | ||
self.model.save_all_params(save_path) | ||
print("{} saved!".format(save_path)) | ||
|
||
def iteration(self, epoch, dataloader, train=True): | ||
total_loss = 0 | ||
start_time = time.time() ## 得到当前时间 | ||
step = 0 | ||
report_loss = 0 | ||
for token_ids, token_target in tqdm(dataloader, position=0, leave=True): | ||
step += 1 | ||
if step % 1000 == 0: | ||
self.model.eval() | ||
print(self.model.sample_generate_english("David Drops the Weight", out_max_length=300, add_eos=True)) | ||
print("loss is " + str(report_loss)) | ||
report_loss = 0 | ||
self.model.train() | ||
if step % 6000 == 0: | ||
self.save(model_save_path) | ||
|
||
# 因为传入了target标签,因此会计算loss并且返回 | ||
loss, pred_logit = self.model(token_ids, labels=token_target) | ||
report_loss += loss.item() | ||
# 反向传播 | ||
if train: | ||
# 清空之前的梯度 | ||
self.optimizer.zero_grad() | ||
# 反向传播, 获取新的梯度 | ||
loss.backward() | ||
# 用获取的梯度更新模型参数 | ||
self.optimizer.step() | ||
|
||
# 为计算当前epoch的平均loss | ||
total_loss += loss.item() | ||
|
||
end_time = time.time() | ||
spend_time = end_time - start_time | ||
# 打印训练信息 | ||
print("epoch is " + str(epoch) + ". loss is " + str(total_loss) + ". spend time is " + str(spend_time)) | ||
|
||
|
||
if __name__ == '__main__': | ||
|
||
trainer = Trainer() | ||
train_epoches = 20 | ||
|
||
for epoch in range(train_epoches): | ||
# 训练一个epoch | ||
trainer.train(epoch) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters