Skip to content

Commit

Permalink
DataFlowSanitizer; Clang changes.
Browse files Browse the repository at this point in the history
DataFlowSanitizer is a generalised dynamic data flow analysis.

Unlike other Sanitizer tools, this tool is not designed to detect a
specific class of bugs on its own.  Instead, it provides a generic
dynamic data flow analysis framework to be used by clients to help
detect application-specific issues within their own code.

Differential Revision: http://llvm-reviews.chandlerc.com/D966

git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@187925 91177308-0d34-0410-b5e6-96231b3b80d8
  • Loading branch information
pcc committed Aug 7, 2013
1 parent 7ae9745 commit 2eeed71
Show file tree
Hide file tree
Showing 9 changed files with 250 additions and 2 deletions.
77 changes: 77 additions & 0 deletions docs/DataFlowSanitizer.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
=================
DataFlowSanitizer
=================

.. contents::
:local:

Introduction
============

DataFlowSanitizer is a generalised dynamic data flow analysis.

Unlike other Sanitizer tools, this tool is not designed to detect a
specific class of bugs on its own. Instead, it provides a generic
dynamic data flow analysis framework to be used by clients to help
detect application-specific issues within their own code.

Usage
=====

With no program changes, applying DataFlowSanitizer to a program
will not alter its behavior. To use DataFlowSanitizer, the program
uses API functions to apply tags to data to cause it to be tracked, and to
check the tag of a specific data item. DataFlowSanitizer manages
the propagation of tags through the program according to its data flow.

The APIs are defined in the header file ``sanitizer/dfsan_interface.h``.
For further information about each function, please refer to the header
file.

Example
=======

The following program demonstrates label propagation by checking that
the correct labels are propagated.

.. code-block:: c++

#include <sanitizer/dfsan_interface.h>
#include <assert.h>

int main(void) {
int i = 1;
dfsan_label i_label = dfsan_create_label("i", 0);
dfsan_set_label(i_label, &i, sizeof(i));

int j = 2;
dfsan_label j_label = dfsan_create_label("j", 0);
dfsan_set_label(j_label, &j, sizeof(j));

int k = 3;
dfsan_label k_label = dfsan_create_label("k", 0);
dfsan_set_label(k_label, &k, sizeof(k));

dfsan_label ij_label = dfsan_get_label(i + j);
assert(dfsan_has_label(ij_label, i_label));
assert(dfsan_has_label(ij_label, j_label));
assert(!dfsan_has_label(ij_label, k_label));

dfsan_label ijk_label = dfsan_get_label(i + j + k);
assert(dfsan_has_label(ijk_label, i_label));
assert(dfsan_has_label(ijk_label, j_label));
assert(dfsan_has_label(ijk_label, k_label));

return 0;
}

Current status
==============

DataFlowSanitizer is a work in progress, currently under development for
x86\_64 Linux.

Design
======

Please refer to the :doc:`design document<DataFlowSanitizerDesign>`.
142 changes: 142 additions & 0 deletions docs/DataFlowSanitizerDesign.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
DataFlowSanitizer Design Document
=================================

This document sets out the design for DataFlowSanitizer, a general
dynamic data flow analysis. Unlike other Sanitizer tools, this tool is
not designed to detect a specific class of bugs on its own. Instead,
it provides a generic dynamic data flow analysis framework to be used
by clients to help detect application-specific issues within their
own code.

DataFlowSanitizer is a program instrumentation which can associate
a number of taint labels with any data stored in any memory region
accessible by the program. The analysis is dynamic, which means that
it operates on a running program, and tracks how the labels propagate
through that program. The tool shall support a large (>100) number
of labels, such that programs which operate on large numbers of data
items may be analysed with each data item being tracked separately.

Use Cases
---------

This instrumentation can be used as a tool to help monitor how data
flows from a program's inputs (sources) to its outputs (sinks).
This has applications from a privacy/security perspective in that
one can audit how a sensitive data item is used within a program and
ensure it isn't exiting the program anywhere it shouldn't be.

Interface
---------

A number of functions are provided which will create taint labels,
attach labels to memory regions and extract the set of labels
associated with a specific memory region. These functions are declared
in the header file ``sanitizer/dfsan_interface.h``.

.. code-block:: c
/// Creates and returns a base label with the given description and user data.
dfsan_label dfsan_create_label(const char *desc, void *userdata);
/// Sets the label for each address in [addr,addr+size) to \c label.
void dfsan_set_label(dfsan_label label, void *addr, size_t size);
/// Sets the label for each address in [addr,addr+size) to the union of the
/// current label for that address and \c label.
void dfsan_add_label(dfsan_label label, void *addr, size_t size);
/// Retrieves the label associated with the given data.
///
/// The type of 'data' is arbitrary. The function accepts a value of any type,
/// which can be truncated or extended (implicitly or explicitly) as necessary.
/// The truncation/extension operations will preserve the label of the original
/// value.
dfsan_label dfsan_get_label(long data);
/// Retrieves a pointer to the dfsan_label_info struct for the given label.
const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label);
/// Returns whether the given label label contains the label elem.
int dfsan_has_label(dfsan_label label, dfsan_label elem);
/// If the given label label contains a label with the description desc, returns
/// that label, else returns 0.
dfsan_label dfsan_has_label_with_desc(dfsan_label label, const char *desc);
Taint label representation
--------------------------

As stated above, the tool must track a large number of taint
labels. This poses an implementation challenge, as most multiple-label
tainting systems assign one label per bit to shadow storage, and
union taint labels using a bitwise or operation. This will not scale
to clients which use hundreds or thousands of taint labels, as the
label union operation becomes O(n) in the number of supported labels,
and data associated with it will quickly dominate the live variable
set, causing register spills and hampering performance.

Instead, a low overhead approach is proposed which is best-case O(log\
:sub:`2` n) during execution. The underlying assumption is that
the required space of label unions is sparse, which is a reasonable
assumption to make given that we are optimizing for the case where
applications mostly copy data from one place to another, without often
invoking the need for an actual union operation. The representation
of a taint label is a 16-bit integer, and new labels are allocated
sequentially from a pool. The label identifier 0 is special, and means
that the data item is unlabelled.

When a label union operation is requested at a join point (any
arithmetic or logical operation with two or more operands, such as
addition), the code checks whether a union is required, whether the
same union has been requested before, and whether one union label
subsumes the other. If so, it returns the previously allocated union
label. If not, it allocates a new union label from the same pool used
for new labels.

Specifically, the instrumentation pass will insert code like this
to decide the union label ``lu`` for a pair of labels ``l1``
and ``l2``:

.. code-block:: c
if (l1 == l2)
lu = l1;
else
lu = __dfsan_union(l1, l2);
The equality comparison is outlined, to provide an early exit in
the common cases where the program is processing unlabelled data, or
where the two data items have the same label. ``__dfsan_union`` is
a runtime library function which performs all other union computation.

Further optimizations are possible, for example if ``l1`` is known
at compile time to be zero (e.g. it is derived from a constant),
``l2`` can be used for ``lu``, and vice versa.

Memory layout and label management
----------------------------------

The following is the current memory layout for Linux/x86\_64:

+---------------+---------------+--------------------+
| Start | End | Use |
+===============+===============+====================+
| 0x700000008000|0x800000000000 | application memory |
+---------------+---------------+--------------------+
| 0x200200000000|0x700000008000 | unused |
+---------------+---------------+--------------------+
| 0x200000000000|0x200200000000 | union table |
+---------------+---------------+--------------------+
| 0x000000010000|0x200000000000 | shadow memory |
+---------------+---------------+--------------------+
| 0x000000000000|0x000000010000 | reserved by kernel |
+---------------+---------------+--------------------+

Each byte of application memory corresponds to two bytes of shadow
memory, which are used to store its taint label. As for LLVM SSA
registers, we have not found it necessary to associate a label with
each byte or bit of data, as some other tools do. Instead, labels are
associated directly with registers. Loads will result in a union of
all shadow labels corresponding to bytes loaded (which most of the
time will be short circuited by the initial comparison) and stores will
result in a copy of the label to the shadow of all bytes stored to.
2 changes: 2 additions & 0 deletions docs/UsersManual.rst
Original file line number Diff line number Diff line change
Expand Up @@ -895,6 +895,8 @@ are listed below.
used in conjunction with the ``-fsanitize-undefined-trap-on-error``
flag. This includes all of the checks listed below other than
``unsigned-integer-overflow`` and ``vptr``.
- ``-fsanitize=dataflow``: :doc:`DataFlowSanitizer`, a general data
flow analysis.

The following more fine-grained checks are also available:

Expand Down
3 changes: 3 additions & 0 deletions include/clang/Basic/Sanitizers.def
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,9 @@ SANITIZER("vptr", Vptr)
// IntegerSanitizer
SANITIZER("unsigned-integer-overflow", UnsignedIntegerOverflow)

// DataFlowSanitizer
SANITIZER("dataflow", DataFlow)

// -fsanitize=undefined includes all the sanitizers which have low overhead, no
// ABI or address space layout implications, and only catch undefined behavior.
SANITIZER_GROUP("undefined", Undefined,
Expand Down
12 changes: 12 additions & 0 deletions lib/CodeGen/BackendUtil.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -206,6 +206,11 @@ static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
PM.add(createThreadSanitizerPass(CGOpts.SanitizerBlacklistFile));
}

static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder,
PassManagerBase &PM) {
PM.add(createDataFlowSanitizerPass());
}

void EmitAssemblyHelper::CreatePasses(TargetMachine *TM) {
unsigned OptLevel = CodeGenOpts.OptimizationLevel;
CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining();
Expand Down Expand Up @@ -265,6 +270,13 @@ void EmitAssemblyHelper::CreatePasses(TargetMachine *TM) {
addThreadSanitizerPass);
}

if (LangOpts.Sanitize.DataFlow) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addDataFlowSanitizerPass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addDataFlowSanitizerPass);
}

// Figure out TargetLibraryInfo.
Triple TargetTriple(TheModule->getTargetTriple());
PMBuilder.LibraryInfo = new TargetLibraryInfo(TargetTriple);
Expand Down
4 changes: 3 additions & 1 deletion lib/Driver/SanitizerArgs.h
Original file line number Diff line number Diff line change
Expand Up @@ -37,10 +37,11 @@ class SanitizerArgs {
NeedsAsanRt = Address,
NeedsTsanRt = Thread,
NeedsMsanRt = Memory,
NeedsDfsanRt = DataFlow,
NeedsLeakDetection = Leak,
NeedsUbsanRt = Undefined | Integer,
NotAllowedWithTrap = Vptr,
HasZeroBaseShadow = Thread | Memory
HasZeroBaseShadow = Thread | Memory | DataFlow
};
unsigned Kind;
std::string BlacklistFile;
Expand All @@ -66,6 +67,7 @@ class SanitizerArgs {
return false;
return Kind & NeedsUbsanRt;
}
bool needsDfsanRt() const { return Kind & NeedsDfsanRt; }

bool sanitizesVptr() const { return Kind & Vptr; }
bool notAllowedWithTrap() const { return Kind & NotAllowedWithTrap; }
Expand Down
8 changes: 8 additions & 0 deletions lib/Driver/Tools.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1860,6 +1860,12 @@ static void addUbsanRTLinux(const ToolChain &TC, const ArgList &Args,
addSanitizerRTLinkFlagsLinux(TC, Args, CmdArgs, "ubsan_cxx", false);
}

static void addDfsanRTLinux(const ToolChain &TC, const ArgList &Args,
ArgStringList &CmdArgs) {
if (!Args.hasArg(options::OPT_shared))
addSanitizerRTLinkFlagsLinux(TC, Args, CmdArgs, "dfsan", true);
}

static bool shouldUseFramePointer(const ArgList &Args,
const llvm::Triple &Triple) {
if (Arg *A = Args.getLastArg(options::OPT_fno_omit_frame_pointer,
Expand Down Expand Up @@ -6275,6 +6281,8 @@ void gnutools::Link::ConstructJob(Compilation &C, const JobAction &JA,
addMsanRTLinux(getToolChain(), Args, CmdArgs);
if (Sanitize.needsLsanRt())
addLsanRTLinux(getToolChain(), Args, CmdArgs);
if (Sanitize.needsDfsanRt())
addDfsanRTLinux(getToolChain(), Args, CmdArgs);

// The profile runtime also needs access to system libraries.
addProfileRTLinux(getToolChain(), Args, CmdArgs);
Expand Down
1 change: 1 addition & 0 deletions lib/Lex/PPMacroExpansion.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -908,6 +908,7 @@ static bool HasFeature(const Preprocessor &PP, const IdentifierInfo *II) {
.Case("enumerator_attributes", true)
.Case("memory_sanitizer", LangOpts.Sanitize.Memory)
.Case("thread_sanitizer", LangOpts.Sanitize.Thread)
.Case("dataflow_sanitizer", LangOpts.Sanitize.DataFlow)
// Objective-C features
.Case("objc_arr", LangOpts.ObjCAutoRefCount) // FIXME: REMOVE?
.Case("objc_arc", LangOpts.ObjCAutoRefCount)
Expand Down
3 changes: 2 additions & 1 deletion runtime/compiler-rt/Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,8 @@ endif
ifeq ($(ARCH),x86_64)
RuntimeLibrary.linux.Configs += \
full-x86_64.a profile-x86_64.a san-x86_64.a asan-x86_64.a \
tsan-x86_64.a msan-x86_64.a ubsan-x86_64.a ubsan_cxx-x86_64.a
tsan-x86_64.a msan-x86_64.a ubsan-x86_64.a ubsan_cxx-x86_64.a \
dfsan-x86_64.a
# We need to build 32-bit ASan/UBsan libraries on 64-bit platform, and add them
# to the list of runtime libraries to make
# "clang -fsanitize=(address|undefined) -m32" work.
Expand Down

0 comments on commit 2eeed71

Please sign in to comment.