Skip to content

MorrisQiu/hdDeepLearningStudy

 
 

Repository files navigation

hdDeepLearningStudy

Papers,code etc for deep learning study group

Suggestions for future readings

https://arxiv.org/pdf/1605.06431v1.pdf - Deep nets are ensembles
https://arxiv.org/pdf/1602.08124v3.pdf - soa for parallelization
https://arxiv.org/pdf/1404.5997v2.pdf - parallel computation issues
http://www.wsdm-conference.org/2016/slides/WSDM2016-Jeff-Dean.pdf - distributed architecture
https://www.youtube.com/watch?v=sUzQpd-Ku4o - video of jeff dean talk
https://arxiv.org/pdf/1611.01578v1.pdf - RL for finding neural architectures
http://mlg.eng.cam.ac.uk/yarin/blog_2248.html - uncertainty in neural nets
https://arxiv.org/pdf/1611.01587.pdf - Joint Many-task model: Neural Net for multiple NLP Tasks - Socher
http://papers.nips.cc/paper/5773-deep-generative-image-models-using-a-laplacian-pyramid-of-adversarial-networks.pdf -GAN paper (recc by LeCun)
https://arxiv.org/pdf/1511.05440.pdf - GAN for video prediction
https://arxiv.org/abs/1703.02528 - Generative unadversarial networks
https://arxiv.org/pdf/1611.01578.pdf - Neural architecture search with RL - google brain
https://arxiv.org/pdf/1703.01041.pdf - Large-Scale Evolution of Image Classifiers - google brain
https://arxiv.org/pdf/1708.05866.pdf - Survey of reinforcement learning
https://arxiv.org/pdf/1710.10196.pdf - training improvements for GAN
https://arxiv.org/pdf/1704.00028v2.pdf - improved training for WGANs
https://openreview.net/forum?id=ry_WPG-A-&noteId=ry_WPG-A - rebuttal for IB theory
http://www.mit.edu/~adedieu/pdf/2048.pdf - deep reinforcement learning
https://arxiv.org/pdf/1710.10784.pdf - geometry of deep learning
https://arxiv.org/pdf/1706.00473.pdf - bayesian perspective
http://openaccess.thecvf.com/content_cvpr_2017/papers/Khoreva_Simple_Does_It_CVPR_2017_paper.pdf - weakly supervised segmentation
https://arxiv.org/pdf/1711.11585.pdf - High resolution image synthesis and semantic manipulation - Nvidia https://github.com/NVIDIA/pix2pixHD - Synthesizing and manipulating 2048x1024 images with conditional GAN https://arxiv.org/pdf/1505.05424.pdf - weight uncertainties
https://arxiv.org/pdf/1711.01297.pdf - weight uncertainties
https://arxiv.org/pdf/1802.03268.pdf - Efficient Neural architecture search
https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems - SOTA algorithms
https://arxiv.org/pdf/1711.10925.pdf - deep image prior
https://arxiv.org/pdf/1711.03953.pdf - breaking softmax bottleneck
mixed scale deep convolution - PNAS Dec 26, 2017
http://lanl.arxiv.org/pdf/1803.05049v1 - Fractal AI
https://arxiv.org/abs/1802.05365 - Deep contextualized word representations
https://arxiv.org/pdf/1804.04241.pdf - capsule net for segmentation (improvement 95%)
https://arxiv.org/pdf/1704.00109.pdf - Snapshot ensembles
https://arxiv.org/pdf/1711.00937.pdf - Neural discrete representation learning
https://arxiv.org/find/cs/1/au:+Segler_M/0/1/0/all/0/1 - refs on chemical models
https://arxiv.org/pdf/1801.10130.pdf - spherical CNN
https://arxiv.org/pdf/1804.02958.pdf - GAN for extreme compression
https://arxiv.org/pdf/1703.05698.pdf - Neural Sketch Learning for Conditional Program Generation

Papers on Learning Rate Scheduling --
https://arxiv.org/pdf/1608.03983.pdf - SGD with warm restarts
https://arxiv.org/pdf/1506.01186.pdf - Cyclical learning rates
https://arxiv.org/pdf/1803.10122.pdf - World models - teaching simple world model prepartory to RL - schmidhuber

ICLR top papers - https://iclr.cc/Conferences/2018/Schedule?type=Oral

https://arxiv.org/abs/1703.06114 Deep Sets

https://arxiv.org/abs/1807.02443 Tangent Convolutions for Dense Prediction in 3D.

https://arxiv.org/pdf/1806.01261.pdf - deep mind graph paper
https://arxiv.org/pdf/1805.11604.pdf - How does Batch normalization work - it's not about covariate shift
https://arxiv.org/pdf/1802.05983.pdf - Disentangling by factorizing
https://arxiv.org/pdf/1808.00508.pdf - Neural arithmetic logic units
https://arxiv.org/pdf/1803.08660.pdf - A new activation function
https://arxiv.org/pdf/1803.05268.pdf - Interpretability in CNN
Here's what the cool kids in SF are looking at this week --

https://arxiv.org/abs/1809.05042 - "Hamiltonian Descent Methods"

https://arxiv.org/pdf/1812.11314.pdf - Meta Reinforcement Learning with Distribution of Exploration Parameters Learned by Evolution Strategies

https://arxiv.org/pdf/1812.11675.pdf - Soft Autoencoder and Its Wavelet Shrinkage Interpretation
https://arxiv.org/pdf/1901.01122.pdf - Machine Translation: A Literature Review
https://arxiv.org/pdf/1901.01010.pdf - A Joint Model for Multimodal Document Quality Assessment
https://arxiv.org/pdf/1901.00949.pdf - Machine Teaching in Hierarchical Genetic Reinforcement Learning: Curriculum Design of Reward Functions for Swarm Shepherding
https://arxiv.org/pdf/1901.00983.pdf - Brief Review of Computational Intelligence Algorithms
https://arxiv.org/pdf/1901.00898.pdf - Imminent Collision Mitigation with Reinfo rcement Learning and Vision
https://github.com/borisbanushev/stockpredictionai - predicting stock prices
https://arxiv.org/abs/1806.01261 - relational inductive bias in graph - deep mind
http://proceedings.mlr.press/v97/mahoney19a/mahoney19a.pdf - Traditional and heavy tailed self regularization in neural net models
https://openreview.net/pdf?id=HygQBn0cYm - Model predictive policy learning with uncertainty regularization for driving in dense traffic
https://arxiv.org/pdf/1906.07774.pdf - information matrices and generalization - bengio
https://arxiv.org/pdf/1710.10903.pdf - graph attention networks bengio
https://arxiv.org/pdf/1812.09430.pdf - dynamic graph representation learning via self attention networks
https://arxiv.org/pdf/1906.04358.pdf - weight agnostic neural networks
https://arxiv.org/pdf/1804.00222.pdf - Meta-Data update rules for unsupervised representation learning
https://arxiv.org/abs/1901.10430 - Pay less attention with lightweight and dynamic convolutions
https://arxiv.org/pdf/1806.03107.pdf - Temporal difference variational autoencoder
https://arxiv.org/pdf/1810.00826.pdf - How powerful are graph neural networks?
https://arxiv.org/abs/1906.07084 - Particle swarm optimization for great enhancement in semi-supervised retinal vessel segmentation with generative adversarial networks
https://arxiv.org/pdf/1908.03015.pdf - Augmenting VAE with sparse labels: A unified framework for supervised and semi-supervised learning.
https://arxiv.org/pdf/1911.06294.pdf - DEEP REINFORCEMENT LEARNING FOR ADAPTIVE TRAFFIC SIGNAL CONTROL
https://arxiv.org/pdf/1911.06615.pdf - Deep learning methods in speaker recognition: a review
https://arxiv.org/pdf/1911.06904.pdf - Improving Graph Neural Network Representations of Logical Formulae with Subgraph Pooling
https://arxiv.org/pdf/1911.07470.pdf - Graph Transformer for Graph-to-Sequence Learning
https://arxiv.org/pdf/1911.07532.pdf - Graph Neural Ordinary Differential Equations - modeling time varying graphs
https://arxiv.org/pdf/1911.08517.pdf - Generalizable Resource Allocation in Stream Processing via Deep Reinforcement Learning

Biology

https://arxiv.org/pdf/1812.11951.pdf - Learning to Design RNA
https://arxiv.org/pdf/1911.06105.pdf - PharML.Bind: Pharmacologic Machine Learning for Protein-Ligand Interactions
https://arxiv.org/pdf/1911.06107.pdf - EARTHMOVER-BASED MANIFOLD LEARNING FOR ANALYZING MOLECULAR CONFORMATION SPACES
https://arxiv.org/pdf/1911.07125.pdf - Opportunities for artificial intelligence in advancing precision medicine

Political news issues

https://arxiv.org/pdf/1911.06198.pdf - Election control in social networks via edge addition and removal
https://arxiv.org/pdf/1911.05885.pdf - Deception through half-truths

Finance Related Papers -

https://arxiv.org/pdf/1911.05892.pdf - Reinforcement Learning for Market Making in Multi-agent Dealer Market
https://arxiv.org/pdf/1911.06193.pdf - Predicting Indian stock market using psycho-linguistic features of financial news
https://arxiv.org/pdf/1911.05952.pdf - Change point analysis in financial networks
https://arxiv.org/pdf/1911.05620.pdf - Neural networks for option pricing and hedging - a literature review
https://arxiv.org/pdf/1911.06126.pdf - Unveil stock correlation via a new tensor-based decomposition method
https://arxiv.org/pdf/1911.08647.pdf - Deep Reinforcement Learning in Cryptocurrency Market Making
https://arxiv.org/pdf/1912.09524.pdf - Evolving ab initio trading strategies in heterogeneous environments
https://arxiv.org/pdf/1912.10343.pdf - Design of High-Frequency Trading Algorithm Based on Machine Learning
https://arxiv.org/abs/1912.10806 - DP-LSTM: Differential Privacy-inspired LSTM for Stock Prediction Using Financial News
https://arxiv.org/pdf/1912.10813.pdf - MODEL UNCERTAINTY IN FINANCIAL FORECASTING

https://arxiv.org/pdf/1910.13675.pdf- Form2Fit: Learning Shape Priors for Generalizable Assembly from Disassembly
https://arxiv.org/pdf/1802.08232.pdf- The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks

Mar 11 - Hacker Dojo

https://arxiv.org/pdf/2002.11089.pdf - Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement

Mar 4 - Hacker Dojo

https://www.osapublishing.org/DirectPDFAccess/C6D6B2C3-953C-4461-695B6E5E2F993943_415059/prj-7-8-823.pdf?da=1&id=415059&seq=0&mobile=no --Nanophotonic media for artificial neural inference

Feb 19 - Hacker Dojo

https://arxiv.org/pdf/1910.02789.pdf - Language is Power: Representing States Using Natural Language in Reinforcement Learning

Feb 12 - Hacker Dojo

https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery - Protein folding paper.

Feb 5 - Hacker Dojo

https://arxiv.org/abs/2001.04451 Reformer, the efficient transformer
https://ai.googleblog.com/2020/01/reformer-efficient-transformer.html

Jan 22 - Hacker Dojo

https://arxiv.org/pdf/1906.05717.pdf - Unsupervised Monocular Depth and Ego-motion Learning with Structure and Semantics

Jan 15 - Hacker Dojo

https://arxiv.org/pdf/1912.09524.pdf - Evolving ab initio trading strategies in heterogeneous environments

Jan 8 - Hacker Dojo

https://arxiv.org/pdf/1911.05892.pdf - Reinforcement Learning for Market Making in Multi-agent Dealer Market

Dec 18 - Hacker Dojo

https://www.nature.com/articles/s41586-019-1724-z.epdf?author_access_token=lZH3nqPYtWJXfDA10W0CNNRgN0jAjWel9jnR3ZoTv0PSZcPzJFGNAZhOlk4deBCKzKm70KfinloafEF1bCCXL6IIHHgKaDkaTkBcTEv7aT-wqDoG1VeO9-wO3GEoAMF9bAOt7mJ0RWQnRVMbyfgH9A%3D%3D
https://www.gwern.net/docs/rl/2019-vinyals.pdf
https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning

Nov 20 - Hacker Dojo

https://arxiv.org/pdf/1911.04252.pdf - Self-training with Noisy Student improves ImageNet classification

Nov 13 - Hacker Dojo

https://arxiv.org/pdf/1910.12713.pdf - Few-shot video-video synthesis

Nov 6 - Hacker Dojo

https://arxiv.org/pdf/1906.11883.pdf - Unsupervised learning of Object Keypoints for Perception and Control

Oct 30 - Hacker Dojo

https://arxiv.org/pdf/1710.03748.pdf - Emergent Complexity via Multi-Agent Competition
https://openai.com/blog/competitive-self-play/

Oct 23 - Hacker Dojo

https://arxiv.org/pdf/1703.04908.pdf - Emergence of Grounded Compositional Language in Multi-Agent Populations

Oct 16 - Hacker Dojo

https://arxiv.org/pdf/1909.07528.pdf - Emergent tool use from multi agent autocurricula
https://openai.com/blog/emergent-tool-use/

Oct 9 - Hacker Dojo

https://arxiv.org/pdf/1901.00949.pdf - Machine Teaching in Hierarchical Genetic Reinforcement Learning: Curriculum Design of Reward Functions for Swarm Shepherding

Sept 25 - Hacker Dojo

https://arxiv.org/pdf/1812.01729.pdf - Boltzman Generators - Sampling equilibrium states of many body systems with deep learning

Sept 18 - Hacker Dojo

https://arxiv.org/pdf/1907.10599.pdf - Fine Grained Spectral Perspective on Neural Networks

Sept 11 - Hacker Dojo

https://arxiv.org/pdf/1906.08237.pdf - XLNet Generalized autoregressive pretraining for language understanding

Sept 4 - Hacker Dojo

https://arxiv.org/pdf/1905.09272.pdf - Data efficient image recognition with contrastive predictive coding.

August 21 - Hacker Dojo

https://arxiv.org/pdf/1904.10509.pdf - Generating long sequences with sparse transformers

August 14 - Hacker Dojo

https://arxiv.org/pdf/1807.03748.pdf - Representation learning with contrastive predictive coding.

July 31 - Hacker Dojo

https://arxiv.org/pdf/1906.08253.pdf - When to trust your model: model-based policy optimization

July 24 - Hacker Dojo

https://arxiv.org/pdf/1901.09321.pdf - Fixup initialization - residual learning without normalization

July 17 - Hacker Dojo

http://proceedings.mlr.press/v97/mahoney19a/mahoney19a.pdf - Traditional and heavy tailed self regularization in neural net models

July 3 - Hacker Dojo

https://arxiv.org/pdf/1804.08838.pdf - Measuring intrinsic dimension of objective landscapes

June 19 - Hacker Dojo

https://arxiv.org/abs/1810.09536 - Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks

June 12 - Hacker Dojo

https://arxiv.org/pdf/1812.05159.pdf - An empirical study of example forgetting during neural network training.

June 5 - Hacker Dojo

https://arxiv.org/pdf/1812.00417.pdf - Snorkel Drybell - A case study in weak supervision at industrial scale
https://arxiv.org/pdf/1905.04981.pdf - Modelling instance level annotator reliability for natural language labelling

May 29 - Hacker Dojo

https://arxiv.org/pdf/1901.09321.pdf - Fixup Initialization: Residual Learning without Normalization

May 22 - Hacker Dojo

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf - Language Models are Unsupervised Multitask Learners.

May 15 - Hacker Dojo

https://arxiv.org/pdf/1811.00995.pdf - Invertible Residual Networks

Apr 29 - Hacker Dojo

https://arxiv.org/pdf/1904.01681.pdf - Augmented Neural ODE's

Apr 8 - Hacker Dojo

https://arxiv.org/pdf/1901.00596.pdf - Comprehensive Survey of Graph Neural Nets
https://github.com/rusty1s/pytorch_geometric

Apr 1 - Hacker Dojo

https://arxiv.org/pdf/1901.00596.pdf - Comprehensive Survey of Graph Neural Nets

Mar 25 - Hacker Dojo

https://papers.nips.cc/paper/7539-optimal-algorithms-for-non-smooth-distributed-optimization-in-networks.pdf - nips award winner

Mar 18 - Hacker Dojo

https://papers.nips.cc/paper/8200-non-delusional-q-learning-and-value-iteration.pdf - Non-delusional Q-learning and Value Iteration

Mar 11 - Hacker Dojo

https://arxiv.org/pdf/1706.03762.pdf - attention is all you need - Vaswani https://github.com/jadore801120/attention-is-all-you-need-pytorch - easier to read code https://www.youtube.com/watch?v=S0KakHcj_rs
https://tdls.a-i.science/events/2018-10-22/
https://tdls.a-i.science/events/2019-02-04/
http://nlp.seas.harvard.edu/2018/04/03/attention.html

Mar 4 - Hacker Dojo

https://arxiv.org/pdf/1806.02643.pdf - Re-evalating Evaluation

Feb 25 - Hacker Dojo

https://arxiv.org/pdf/1812.11951.pdf - Learning to Design RNA

Feb 11 - Hacker Dojo -

https://arxiv.org/pdf/1901.02860.pdf - Transformer XL - Attentive Language Models, Beyond a fixed length context

Feb 4 - Hacker Dojo

https://arxiv.org/pdf/1809.06646.pdf - Model Free Adaptive Optimal Control of Sequential Manufacturing Process Using Reinforcement Learning

January 28 - Hacker Dojo

https://arxiv.org/pdf/1806.07366.pdf - Neural Ordinary Differential Equations - Top paper NIPS2019

January 21 - Hacker Dojo

https://arxiv.org/pdf/1606.05312.pdf - Successor Features for Transfer in Reinforcement Learning
http://proceedings.mlr.press/v37/schaul15.pdf - Universal Value Function Approximators
http://proceedings.mlr.press/v80/barreto18a/barreto18a.pdf - Transfer in deep reinforcement learning using successor features and generalised policy improvement.

https://www.youtube.com/watch?v=YDCPHekLUI4&t=1053s - Tom Schaul
https://www.youtube.com/watch?v=OCHwXxSW70o - Tejas Kulkarni

January 14 - Hacker Dojo

https://arxiv.org/pdf/1812.07626.pdf - Universal Successor Features Approximators

January 7 - Hacker Dojo

https://arxiv.org/pdf/1810.12715.pdf - On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models

December 17 - Hacker Dojo

https://openreview.net/pdf?id=S1x4ghC9tQ - Temporal Difference Variational Autoencoder

December 10 - Hacker Dojo

https://openreview.net/pdf?id=S1JHhv6TW - Boosting Dilated Convolution with Mixed Tensor Decompositions

December 3 - Hacker Dojo

https://arxiv.org/pdf/1712.01208.pdf - The case for learned index structures

November 26 - Hacker Dojo

https://arxiv.org/abs/1809.07402 - Generalization properties of nn - Socher
https://einstein.ai/research/blog/identifying-generalization-properties-in-neural-networks - blog for above paper

November 19 - Hacker Dojo

https://arxiv.org/pdf/1802.05983.pdf - Disentangling by Factorising
https://arxiv.org/pdf/1804.00104.pdf - Learning Disentangled Joint, Discrete and Continuous Representations
https://arxiv.org/pdf/1807.05520.pdf - Deep Clustering for Unsupervised Learning of Visual Features
https://github.com/1Konny/FactorVAE
https://github.com/paruby/FactorVAE
https://github.com/nicolasigor/FactorVAE

November 12 - Hacker Dojo

https://arxiv.org/pdf/1810.12894.pdf - Exploration by Random Network Distillation - OpenAI

November 5 - Hacker Dojo

https://arxiv.org/pdf/1810.04805.pdf - Pre-trainged bi directional transformers for language translation

October 22 - Hacker Dojo

https://arxiv.org/pdf/1801.02613.pdf - Characterizing Adversarial Examples using Local Intrinsic Dimensionality

October 15 - Hacker Dojo

https://arxiv.org/pdf/1808.06670.pdf - Learning Deep Representations by Mutual Estimation Estimation and Maximization - Hjelm, Bengio

October 8 - Hacker Dojo

https://arxiv.org/pdf/1802.04364.pdf - Junction Tree Variational Auto-Encoder for Molecular Graph Generation
http://snap.stanford.edu/proj/embeddings-www/files/nrltutorial-part2-gnns.pdf

October 1 - Hacker Dojo

https://arxiv.org/pdf/1808.06601.pdf - Video to video synthesis https://github.com/NVIDIA/vid2vid - code

September 24 - Hacker Dojo

https://arxiv.org/pdf/1807.03146.pdf - Discovery of 3d keypoints from 2d image

September 17 - Hacker Dojo

https://arxiv.org/abs/1709.02371 - PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume," by Deqing Sun et al. (CVPR 2018) Phil Ferrier will present the paper and run though his code for us. Phil's code is on his github reop:
https://github.com/philferriere/tfoptflow

September 10 - Hacker Dojo

https://arxiv.org/pdf/1807.03247.pdf - Intriguing failure (and improvement) to CNN for determining rotations.

September 3 - Hacker Dojo

https://arxiv.org/pdf/1803.03324.pdf - Learning Deep Generative Models of Graphs

August 27 - Hacker Dojo

https://arxiv.org/abs/1709.10082 - Optimally decentralized multi-robot collision avoidance w reinforcement learning.

https://github.com/TensorSwarm/TensorSwarm - Andreas Pasternak code for above

August 13 - Hacker Dojo

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/learning-dexterity/learning-dexterity-paper.pdf -Robot doing single hand manipulations.
https://www.theverge.com/2018/7/30/17621112/openai-robot-dexterity-dactyl-artificial-intelligence

July 30 - Hacker Dojo -

https://arxiv.org/pdf/1711.03953.pdf - Breaking the softmax bottleneck
https://arxiv.org/pdf/1805.10829.pdf - SigSoftMax: Reanalyzing the softmax bottleneck
https://severelytheoretical.wordpress.com/2018/06/08/the-softmax-bottleneck-is-a-special-case-of-a-more-general-phenomenon/

July 23 - Hacker Dojo -

https://arxiv.org/pdf/1807.01281.pdf - Human level performance in first person multiplayer games with population reinforcement learning.
https://deepmind.com/blog/capture-the-flag/ https://www.youtube.com/watch?v=steioHoiEms
https://arxiv.org/abs/1711.09846v2
https://arxiv.org/pdf/1611.05397.pdf

July 16 - Hacker Dojo

https://arxiv.org/pdf/1803.10122.pdf - schmidhuber paper on RL

July 9 - Hacker Dojo

https://deepmind.com/research/publications/neural-scene-representation-and-rendering/ - Rendering 3d scene

July 2 - Hacker Dojo -

https://arxiv.org/pdf/1707.06347.pdf - Proximal Optimization Policies

June 25 - Hacker Dojo

https://openreview.net/pdf?id=BJOFETxR- - Learning to represent programs with graphs

June 18 - Hacker Dojo

https://openreview.net/pdf?id=BkisuzWRW - Zero Shot Visual Imitation - Reinforcement Learning

June 11 - Hacker Dojo

https://openreview.net/forum?id=HkL7n1-0b - Wasserstein Auto Encoders - one of ICLR top papers.

June 4 - Hacker Dojo

https://openreview.net/pdf?id=Hy7fDog0b - Ambient GAN - Generative Models from Lossy Measurements - ICLR top paper

May 21 - Hacker Dojo

https://arstechnica.com/science/2018/05/ai-trained-to-navigate-develops-brain-like-location-tracking/ - Grid representations in rat brain
https://deepmind.com/documents/200/Banino_at_al_final.pdf --
https://www.nature.com/articles/s41586-018-0102-6 --

May 14 - Hacker Dojo

https://arxiv.org/pdf/1712.06567.pdf - Deep Neuroevolution: Genetic Algorithms are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
https://arxiv.org/pdf/1712.06560.pdf - Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents
https://eng.uber.com/deep-neuroevolution/ - Uber engineering blog post

May 7 - Hacker Dojo

https://arxiv.org/pdf/1801.10130.pdf - spherical CNN

Apr 30 - Hacker Dojo

https://arxiv.org/pdf/1710.07313.pdf - Using machine learning to replicate chaotic attractors
http://www.bmp.ds.mpg.de/tl_files/bmp/preprints/Zimmermann_Parlitz_preprint.pdf - paper to be published in "chaos"
https://www.quantamagazine.org/machine-learnings-amazing-ability-to-predict-chaos-20180418/ - blog post

Apr 23 - Hacker Dojo

https://arxiv.org/pdf/1711.10925.pdf - Deep Image Prior
https://dmitryulyanov.github.io/deep_image_prior - git hub from authors
https://box.skoltech.ru/index.php/s/ib52BOoV58ztuPM
http://mlexplained.com/2018/01/18/paper-dissected-deep-image-prior-explained/
http://fortune.com/2018/04/24/nvidia-artificial-intelligence-images/ - Article w video showing photo editing use

Apr 16 - Hacker Dojo

Finish Fractal AI
https://arxiv.org/pdf/1711.07971.pdf - non-local filtering

Apr 9 - Hacker Dojo

http://lanl.arxiv.org/pdf/1803.05049v1 - Fractal AI

Apr 2 - Hacker Dojo

https://arxiv.org/pdf/1803.04831.pdf - IndRNN longer deeper RNN's

Mar 26 - Hacker Dojo

https://arxiv.org/pdf/1711.10433.pdf - parallel wavenet
https://arxiv.org/pdf/1708.04552.pdf - regularizing convnet with cutout (desert paper) http://www.cs.toronto.edu/~jmartens/docs/Deep_HessianFree.pdf - will get short presentation on this one.

Mar 19 - Hacker Dojo

https://arxiv.org/pdf/1802.03268.pdf - Efficient Neural Architecture Search via Parameter Sharing
https://github.com/carpedm20/ENAS-pytorch

some related papers and reviews. https://arxiv.org/pdf/1708.05344.pdf - One shot architecture search
https://openreview.net/forum?id=ByQZjx-0-
and
https://openreview.net/forum?id=rydeCEhs-

Mar 12 - Hacker Dojo

https://arxiv.org/abs/1703.10135 - tacotron - end-to-end speech synthesis
https://arxiv.org/pdf/1712.05884.pdf - tacotron 2
https://research.googleblog.com/2017/12/tacotron-2-generating-human-like-speech.html - https://github.com/A-Jacobson/tacotron2 - pytorch code http://research.baidu.com/deep-speech-3%EF%BC%9Aexploring-neural-transducers-end-end-speech-recognition/

Feb 26 - Hacker Dojo

https://arxiv.org/pdf/1705.09792.pdf - Deep Complex Networks

Feb 19 - Hacker Dojo

https://arxiv.org/pdf/1801.10308.pdf - Nested LSTM's
https://arxiv.org/pdf/1705.10142.pdf - KRU from Fair
https://github.com/hannw/nlstm - tf code for Nested LSTM

Feb 12 - Hacker Dojo

http://openaccess.thecvf.com/content_cvpr_2017/papers/Khoreva_Simple_Does_It_CVPR_2017_paper.pdf - Weakly Supervised Instance and Semantic Segmentation
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/weakly-supervised-learning/simple-does-it-weakly-supervised-instance-and-semantic-segmentation/
https://github.com/philferriere/tfwss - Phil Ferriere's code
https://drive.google.com/file/d/1wPHMA4PqygawvIxRiy-2ZMKcpUO447cz/view?usp=sharing - mehul's notebook on segmentation

Feb 5 - Hacker Dojo

https://arxiv.org/pdf/1511.06939.pdf - using rnn for recommendation system
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46488.pdf - latest paper on rnn for recommendation

Jan 29 - Hacker Dojo

https://arxiv.org/pdf/1709.04511.pdf - Empirical study of multi-agent RL
https://github.com/geek-ai/1m-agents - code

Jan 22 - Hacker Dojo

https://arxiv.org/pdf/1704.00028.pdf - Improvements in Wasserstein GAN training

Jan 15 - Hacker Dojo

https://arxiv.org/pdf/1710.02298.pdf - Combining improvements in deep reinforcement learning

Jan 8 - Hacker Dojo

https://openreview.net/pdf?id=HJWLfGWRb - follow-on to capsule network paper
https://www.youtube.com/watch?v=pPN8d0E3900
https://www.youtube.com/watch?v=2Kawrd5szHE
https://github.com/ageron/handson-ml/blob/master/extra_capsnets.ipynb
https://github.com/naturomics/CapsNet-Tensorflow
https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-ii-how-capsules-work-153b6ade9f66

Dec 11 - Hacker Dojo

https://arxiv.org/pdf/1710.09829.pdf - Dynamic routing between capsules - Hinton

Nov 27 - Hacker Dojo

https://arxiv.org/pdf/1701.01724.pdf - DeepStack: Expert-Level Artificial Intelligence in Heads-Up No-Limit Poker

Nov 13 - Hacker Dojo

https://deepmind.com/documents/119/agz_unformatted_nature.pdf - alpha zero paper
https://webdocs.cs.ualberta.ca/~mmueller/talks/2016-LeeSedol-AlphaGo.pdf - some slides

Nov 6 - Hacker Dojo

https://arxiv.org/pdf/1703.10593.pdf - cycle consistent GANs

Oct 30 - Hacker Dojo

https://arxiv.org/pdf/1503.02406.pdf Naftali Tishby and Noga Zaslavsky. information bottleneck principle.

https://www.cs.huji.ac.il/labs/learning/Papers/allerton.pdf - Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method.

https://www.reddit.com/r/MachineLearning/comments/75uua6/r_2_hr_talk_information_theory_of_deep_learning/

Oct 23 - Hacker Dojo

Mask R-CNN
https://arxiv.org/abs/1703.06870

And these are prerequisites (read at least Fast R-CNN and Faster R-CNN)

R-CNN
https://arxiv.org/abs/1311.2524

Fast R-CNN
https://arxiv.org/pdf/1504.08083.pdf

Faster R-CNN
https://arxiv.org/abs/1506.01497 Feature Pyramid Networks
https://arxiv.org/abs/1612.03144

Oct 16 - Hacker Dojo

https://arxiv.org/pdf/1703.00810.pdf - Opening the Black Box of Neural Nets via Information
https://www.youtube.com/watch?v=ekUWO_pI2M8
https://www.youtube.com/watch?v=bLqJHjXihK8

Oct 9 - Hacker Dojo

https://arxiv.org/pdf/1501.00092.pdf - super resolution first paper
https://arxiv.org/abs/1608.00367 - super resolution second paper

Oct 2 - Hacker Dojo

https://arxiv.org/abs/1604.03901 - Single-Image Depth Perception in the Wild

Sept 25 - Hacker Dojo

https://arxiv.org/pdf/1706.08947.pdf - Exploring generalization in deep networks.

Sept 18 - Hacker Dojo

https://arxiv.org/pdf/1705.02550.pdf - nvidia drone nav
https://github.com/NVIDIA-Jetson/redtail/wiki - code

Sept 11 - Hacker Dojo

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.5060&rep=rep1&type=pdf - hyperneat ref
https://arxiv.org/pdf/1609.09106.pdf - Hypernet ref
http://blog.otoro.net/2016/09/28/hyper-networks/ - blog on hypernet
https://www.youtube.com/watch?v=-8oyTYViuJ4 - vid on hyperNeat
http://eplex.cs.ucf.edu/hyperNEATpage/HyperNEAT.html - blog on hyperNeat

August 28 - Hacker Dojo

https://arxiv.org/pdf/1708.05344.pdf - SMASH: One-Shot Model Architecture Search through HyperNetworks https://www.youtube.com/watch?v=79tmPL9AL48 - youtube vid on SMASH

August 21 - Hacker Dojo

https://arxiv.org/pdf/1706.02515.pdf - Self Normalizing Neural Networks - Hochreiter

August 14 - Hacker Dojo

https://arxiv.org/pdf/1606.01541.pdf - Reinforcement Learning for Dialog Generation - Jurafsky
https://github.com/liuyuemaicha/Deep-Reinforcement-Learning-for-Dialogue-Generation-in-tensorflow - tensorflow code for same
https://github.com/jiweil/ - some related code
https://arxiv.org/pdf/1612.00563.pdf - self critical training for image captioning - RL for text prob.

Some papers referenced by Jurafsky paper [1506.05869] A Neural Conversational Model - Vinyals and Le
https://arxiv.org/abs/1604.04562 - Dialogue generation system - Wen

Aug 7 - Hacker Dojo

https://arxiv.org/pdf/1705.04304.pdf - A Deep Reinforced Model for Abstractive Summarization - socher

July 31 - Hacker Dojo

https://arxiv.org/pdf/1706.01433.pdf - visual interaction networks - deep mind
https://arxiv.org/pdf/1706.01427.pdf - neural model for relational reasoning - deep mind

July 24

Guest Speaker - Using FPGA to speed CNN.
https://arxiv.org/pdf/1703.03130.pdf - A structured self-attentive sentence embedding - Lin and Bengio
https://github.com/dennybritz/deeplearning-papernotes/blob/master/notes/self_attention_embedding.md (review)
https://github.com/yufengm/SelfAttentive code
https://github.com/Diego999/SelfSent code

July 17 - Hacker Dojo

https://arxiv.org/pdf/1706.03762.pdf - attention is all you need - Vaswani
https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/models
https://github.com/jadore801120/attention-is-all-you-need-pytorch - easier to read code
https://arxiv.org/pdf/1607.06450.pdf - layer normalization paper - hinton
https://www.youtube.com/watch?v=nR74lBO5M3s - google translate paper - youtube video
https://arxiv.org/pdf/1609.08144.pdf - google translate paper -

July 10 - Hacker Dojo

https://arxiv.org/pdf/1706.03762.pdf - attention is all you need - Vaswani
https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/models
https://github.com/jadore801120/attention-is-all-you-need-pytorch - easier to read code
https://arxiv.org/pdf/1607.06450.pdf - layer normalization paper - hinton

Some added references regarding positional encodings

http://www.machinelearning.org/proceedings/icml2006/047_Connectionist_Tempor.pdf - A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber
https://www.reddit.com/r/MachineLearning/comments/6jdi87/r_question_about_positional_encodings_used_in/

June 26 - Hacker Dojo

https://arxiv.org/pdf/1705.03122.pdf - convolutional sequence to sequence learning
https://arxiv.org/pdf/1706.03762.pdf - attention is all you need - Vaswani
http://www.machinelearning.org/proceedings/icml2006/047_Connectionist_Tempor.pdf - A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber

June 19 - Hacker Dojo

https://arxiv.org/pdf/1701.02720.pdf - RNN for end to end voice recognition

June 12 - Hacker Dojo

New reinforcement learning results -- Too cool for school. Watch the video and you'll be hooked.
https://www.youtube.com/watch?v=2vnLBb18MuQ&feature=em-subs_digest

http://www.cs.ubc.ca/~van/papers/2017-TOG-deepLoco/index.html - paper

May 22 - Hacker Dojo

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/HintonDengYuEtAl-SPM2012.pdf - comparison of RNN and HMM for speech recognition

May 15 - Hacker Dojo

https://arxiv.org/pdf/1412.6572.pdf - Explaining and Harnessing Adversarial Examples

May 1 - Hacker Dojo

https://arxiv.org/abs/1704.03453 - The Space of Transferable Adversarial Examples

Apr 24 - Hacker Dojo

https://discourse-production.oss-cn-shanghai.aliyuncs.com/original/3X/1/5/15ba4cef726cab390faa180eb30fd82b693469f9.pdf - Using TPU for data center

Apr 17 - Hacker Dojo

Reservoir Computing by Felix Grezes. http://www.gc.cuny.edu/CUNY_GC/media/Computer-Science/Student%20Presentations/Felix%20Grezes/Second_Exam_Survey_Felix_Grezes_9_04_2014.pdf

Slides by Felix Grezes: Reservoir Computing for Neural Networks
http://www.gc.cuny.edu/CUNY_GC/media/Computer-Science/Student%20Presentations/Felix%20Grezes/Second_Exam_Slides_Felix_Grezes_9-14-2014.pdf (more at: http://speech.cs.qc.cuny.edu/~felix/ )

This is a short, very useful backgrounder on randomized projections,
here used for compressed sensing, in a blog post by Terence Tao
https://terrytao.wordpress.com/2007/04/13/compressed-sensing-and-single-pixel-cameras/

and the same story told with illustrations on the Nuit Blanche blog:
http://nuit-blanche.blogspot.com/2007/07/how-does-rice-one-pixel-camera-work.html

(BTW http://nuit-blanche.blogspot.com is a tremendous website.)


If we have time, we may discuss this paper:

Information Processing Using a Single Dynamical Node as Complex System.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195233/pdf/ncomms1476.pdf

Apr 10 - Hacker Dojo

https://arxiv.org/pdf/1603.08678.pdf - Instance-sensitive Fully Convolutional Networks

https://arxiv.org/pdf/1611.07709.pdf - Fully Convolutional Instance-aware Semantic Segmentation

Apr 3 - Hacker Dojo

https://arxiv.org/pdf/1703.03864.pdf - Sutskever paper on using evolutionary systems for optimizing RL prob
http://jmlr.csail.mit.edu/papers/volume15/wierstra14a/wierstra14a.pdf - ES paper with algo used in Sutskever paper

Mar 27 - Hacker Dojo

Aurobindo Tripathy will reprise a talk he's going to give at Embedded Summit this year. His talk will survey recent progress in object detection from RCNN to Single Shot MultiBox Detector and Yolo 9000.

Mar 20 - Hacker Dojo

https://arxiv.org/pdf/1612.05424.pdf - Unsupervised Pixel-level domain adaptation with generative adversarial networks

Mar 13 - Hacker Dojo

https://arxiv.org/pdf/1701.06547.pdf - adversarial learning for neural dialog generation

February 27 - Hacker Dojo

https://arxiv.org/pdf/1612.02699.pdf - Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing
Zeeshan's slides are in the folder with his name on it. Along with his descriptions of his own ground-breaking work, he gives an excellent history of efforts to identify 3d objects from 2d images.

February 20 - Hacker Dojo

https://arxiv.org/pdf/1506.07285.pdf - Ask me anything - Socher
https://github.com/YerevaNN/Dynamic-memory-networks-in-Theano - Code and implementation notes.
https://www.youtube.com/watch?v=FCtpHt6JEI8&t=27s - Socher presentation of material

February 13 - Hacker Dojo

https://arxiv.org/pdf/1701.06538v1.pdf - Outrageously large neural networks

February 6 - Hacker Dojo

https://arxiv.org/pdf/1505.00387v2.pdf - Highway networks
https://arxiv.org/pdf/1507.06228.pdf - Also highway networks - different examples
https://arxiv.org/pdf/1607.03474v3.pdf - Recurrent Highway Networks

January 30 - Hacker Dojo

https://arxiv.org/pdf/1603.03116v2.pdf - Low-rank pass-through RNN's follow-on to unitary rnn https://github.com/Avmb/lowrank-gru - theano code

January 23 - HackerDojo

https://arxiv.org/abs/1612.03242 - Stack Gan Paper
https://github.com/hanzhanggit/StackGAN - Code

January 16 - Hacker Dojo

https://arxiv.org/pdf/1511.06464v4.pdf - Unitary Evolution RNN https://github.com/amarshah/complex_RNN - theano code

January 9 - Hacker Dojo

Cheuksan Edward Wang Talk
https://arxiv.org/pdf/1612.04642v1.pdf - rotation invariant cnn
https://github.com/deworrall92/harmonicConvolutions - tf code for harmonic cnn http://visual.cs.ucl.ac.uk/pubs/harmonicNets/index.html - blog post by authors

January 2 - Hacker Dojo

https://arxiv.org/pdf/1602.02218v2.pdf - using typing to improve RNN behavior
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf - exploration of alternative LSTM architectures

December 19 - Hacker Dojo

https://arxiv.org/pdf/1611.01576.pdf - Socher qRnn paper

December 12 - Hacker Dojo

https://arxiv.org/pdf/1604.02135v2.pdf - latest segmentation fair
https://github.com/MarvinTeichmann/tensorflow-fcn - code for segmenter

December 5 - Hacker Dojo

https://arxiv.org/pdf/1506.06204.pdf - Object segmentation https://arxiv.org/pdf/1603.08695v2.pdf - refinement of above segmentation paper
https://code.facebook.com/posts/561187904071636/segmenting-and-refining-images-with-sharpmask/ - blog post
https://github.com/facebookresearch/deepmask - torch code for deepmask

November 28 - Hacker Dojo

https://arxiv.org/pdf/1506.01497v3.pdf
people.eecs.berkeley.edu/~rbg/slides/rbg-defense-slides.pdf - Girshick thesis slides
Check edge boxes and selective search
https://arxiv.org/pdf/1406.4729v4.pdf - key part of architecture
https://github.com/smallcorgi/Faster-RCNN_TF - excellent code

November 21 - Hacker Dojo

https://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf - RCNN
https://arxiv.org/pdf/1504.08083v2.pdf - RCNN - first in series
https://arxiv.org/pdf/1506.01497v3.pdf - Faster R-CNN
http://techtalks.tv/talks/rich-feature-hierarchies-for-accurate-object-detection-and-semantic-segmentation/60254/ - video of Girshick talk

November 14 - Hacker Dojo

https://arxiv.org/pdf/1506.02025v3.pdf - Spatial transformer networks
https://github.com/daviddao/spatial-transformer-tensorflow - tf code for above

October 31 - Hacker Dojo

https://github.com/jazzsaxmafia/show_attend_and_tell.tensorflow - tf code for attention-captioning http://cs.stanford.edu/people/karpathy/densecap/ - karpathy captioning https://arxiv.org/pdf/1412.2306v2.pdf - earlier karpathy captioning paper

October 20 - Galvanize

https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html - Deep dive into reinforcement learning - Sutton and Barto - Chapters 1 and 2.

Oct 17 - Hacker Dojo

https://arxiv.org/pdf/1608.06993v1.pdf - DenseNet. New reigning champion image classifier
https://github.com/liuzhuang13/DenseNet - lua code
The DenseNet paper is straight-forward, so we're also going to start on image captioning

http://www.cs.toronto.edu/~zemel/documents/captionAttn.pdf
http://kelvinxu.github.io/projects/capgen.html
http://people.ee.duke.edu/~lcarin/Yunchen9.25.2015.pdf - slides for caption attention

collections of captioning papers. https://github.com/kjw0612/awesome-deep-vision#image-captioning - images
https://github.com/kjw0612/awesome-deep-vision#video-captioning - video

Oct 13 - SF

http://www.mit.edu/~dimitrib/NDP_Encycl.pdf - (early) Bersekas paper on RL, policy and value iteration
http://www.nervanasys.com/demystifying-deep-reinforcement-learning/?imm_mid=0e2d7e&cmp=em-data-na-na-newsltr_20160420 - blog post on RL. Nice coverage of value iteration

Oct 10 - Hacker Dojo

https://github.com/carpedm20/pixel-rnn-tensorflow - tensorflow code for pixel rnn (and cnn)

Sept 19 - Hacker Dojo

https://arxiv.org/pdf/1606.05328v2.pdf - Conditional Image Generation with PixelCNN decoders
https://arxiv.org/pdf/1601.06759v3.pdf - Pixel RNN
https://drive.google.com/file/d/0B3cxcnOkPx9AeWpLVXhkTDJINDQ/view - wavenet Generative Audio
https://deepmind.com/blog/wavenet-generative-model-raw-audio/ - wavenet blog

Sept 15 - Galvanize SF

http://www.gitxiv.com/posts/fepYG4STYaej3KSPZ/densely-connected-convolutional-netowork-densenet

Sept 12 - Hacker Dojo

http://arxiv.org/pdf/1410.3916v11.pdf - original memory networks
https://arxiv.org/pdf/1606.03126v1.pdf - key/value memory augmented nn http://www.thespermwhale.com/jaseweston/icml2016/icml2016-memnn-tutorial.pdf#page=87 - tutorial on memory networks in language understanding

August 29 - Hacker Dojo

https://arxiv.org/pdf/1410.5401v2.pdf - Neural Turing Machines
https://github.com/carpedm20/NTM-tensorflow
https://www.youtube.com/watch?v=_H0i0IhEO2g - Alex Graves presentation at microsoft research
http://www.robots.ox.ac.uk/~tvg/publications/talks/NeuralTuringMachines.pdf - slides for ntm

August 25 - Galvanize (SF)

http://arxiv.org/pdf/1410.3916v11.pdf - original memory networks
https://arxiv.org/pdf/1606.03126v1.pdf - key/value memory augmented nn http://www.thespermwhale.com/jaseweston/icml2016/icml2016-memnn-tutorial.pdf#page=87 - tutorial on memory networks in language understanding

August 22 - Hacker Dojo

https://arxiv.org/pdf/1605.07648v1.pdf - fractal net - alternative to resnet for ultra-deep convolution https://github.com/edgelord/FractalNet - tf code
http://www.gitxiv.com/posts/ibA8QEu8bvBJSDxr9/fractalnet-ultra-deep-neural-networks-without-residuals

August 18, 2016 - Galvanize (SF)

https://arxiv.org/pdf/1602.01783v2.pdf - new RL architecture - deep mind

Code: https://github.com/Zeta36/Asynchronous-Methods-for-Deep-Reinforcement-Learning - tf
https://github.com/miyosuda/async_deep_reinforce - tf
https://github.com/coreylynch/async-rl - keras (tf)
https://github.com/muupan/async-rl - chainer (good discussion)

August 15, 2016 - Hacker Dojo

https://arxiv.org/pdf/1607.02533v1.pdf - Hardening deep networks to adversarial examples.

August 11, 2016 - Galvanize (SF)

http://www.gitxiv.com/posts/HQJ3F9YzsQZ3eJjpZ/model-free-episodic-control - deep mind gitxiv paper and code on github https://github.com/sudeepraja/Model-Free-Episodic-Control - other code https://github.com/ShibiHe/Model-Free-Episodic-Control

August 8, 2016 - Hacker Dojo

https://arxiv.org/pdf/1406.2661.pdf - originating paper on generative adversarial net (gan) - goodfellow, bengio
http://arxiv.org/pdf/1511.06434v2.pdf - deep cnn gan - radford
https://github.com/Newmu/dcgan_code - theano code for cnn gan - radford

August 4, 2016 - Galvanize (SF)

http://www.gitxiv.com/posts/HQJ3F9YzsQZ3eJjpZ/model-free-episodic-control - deep mind gitxiv paper and code on github

August 1, 2016 - Hacker Dojo

Papers -
https://drive.google.com/file/d/0B8Dg3PBX90KNWG5KQXNQOFlBLU1JWWVONkN1UFpnbUR6Y0cw/view?pref=2&pli=1 - Using Stochastic RNN for temporal anomaly detection
https://home.zhaw.ch/~dueo/bbs/files/vae.pdf - cover math
https://arxiv.org/pdf/1401.4082v3.pdf - Rezende - Other Original VAE paper

Code Review -
https://github.com/oduerr/dl_tutorial/blob/master/tensorflow/vae/vae_demo.ipynb
https://github.com/oduerr/dl_tutorial/blob/master/tensorflow/vae/vae_demo-2D.ipynb

July 28, 2016 - SF

Papers:
http://arxiv.org/pdf/1410.5401v2.pdf - Neural Turing Machines - Graves et. al.
https://arxiv.org/pdf/1605.06065v1.pdf - One Shot Learning - DeepMind

Code:
http://icml.cc/2016/reviews/839.txt
https://github.com/brendenlake/omniglot
https://github.com/tristandeleu/ntm-one-shot
https://github.com/MLWave/extremely-simple-one-shot-learning

July 25, 2016 - Hacker Dojo

Papers - Using VAE for anomaly detection
https://arxiv.org/pdf/1411.7610.pdf - Stochastic Recurrent Networks
https://drive.google.com/file/d/0B8Dg3PBX90KNWG5KQXNQOFlBLU1JWWVONkN1UFpnbUR6Y0cw/view?pref=2&pli=1 - Using Stochastic RNN for temporal anomaly detection

July 21, 2016 - SF

Papers to read:
http://www.thespermwhale.com/jaseweston/ram/papers/paper_16.pdf
http://snowedin.net/tmp/Hochreiter2001.pdf -

Comments / Code
http://icml.cc/2016/reviews/839.txt
https://github.com/brendenlake/omniglot
https://github.com/tristandeleu/ntm-one-shot
https://github.com/MLWave/extremely-simple-one-shot-learning
https://www.periscope.tv/hugo_larochelle/1ypJdnPRYEoKW

July 18, 2016 - Hacker Dojo

Papers to read:
http://arxiv.org/pdf/1312.6114v10.pdf - variational autoencoders - U of Amsterdam - Kingma and Welling
http://arxiv.org/pdf/1310.8499v2.pdf - deep autoregressive networks - deep mind
https://arxiv.org/abs/1606.05908 - tutorial on vae

Commentaries/Code
https://jmetzen.github.io/2015-11-27/vae.html - metzen - code and discussion
http://blog.keras.io/building-autoencoders-in-keras.html - chollet - discusses different autoencoders, gives keras code.

June 27, July 11 2016 - Hacker Dojo

Recurrent network for image generation - Deep Mind
https://arxiv.org/pdf/1502.04623v2.pdf
Background and some references cited
http://blog.evjang.com/2016/06/understanding-and-implementing.html - blog w. code for VAE
http://arxiv.org/pdf/1312.6114v10.pdf - Variational Auto Encoder
https://jmetzen.github.io/2015-11-27/vae.html - tf code for variational auto-encoder
https://www.youtube.com/watch?v=P78QYjWh5sM

https://arxiv.org/pdf/1401.4082.pdf - stochastic backpropagation and approx inference - deep mind
http://www.cs.toronto.edu/~fritz/absps/colt93.html - keep neural simple by minimizing descr length - hinton
https://github.com/vivanov879/draw - code

June 20, 2016 - Penninsula

Recurrent models of visual attention - Deep Mind
https://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf

June 23, 29 2016 - SF

http://arxiv.org/pdf/1410.5401v2.pdf - Neural Turing Machines - Graves et. al.
https://arxiv.org/pdf/1605.06065v1.pdf - One Shot Learning - DeepMind
http://www.shortscience.org/paper?bibtexKey=journals/corr/1605.06065 - Larochell comments on One-Shot paper
https://github.com/shawntan/neural-turing-machines - Code
https://www.reddit.com/r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/cp4ecce - schmidhuber's comments
http://www.thespermwhale.com/jaseweston/ram/papers/paper_16.pdf
http://snowedin.net/tmp/Hochreiter2001.pdf - Reviews:
http://icml.cc/2016/reviews/839.txt
Code https://github.com/brendenlake/omniglot https://github.com/tristandeleu/ntm-one-shot https://github.com/MLWave/extremely-simple-one-shot-learning

June 13, 2016 - TBD, Penninsula

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning:
http://arxiv.org/pdf/1602.07261v1.pdf

June 9, 2016 - Galvanize

Visualizing and Understanding RNN:
https://arxiv.org/pdf/1506.02078v2.pdf

June 6, 2016 - Hacker Dojo

Google inception paper - origin of 1x1 convolution layers
http://arxiv.org/pdf/1409.4842v1.pdf

June 2, May 26, 2016 - Galvanize

Image segmentation with deep encoder-decoder

https://arxiv.org/pdf/1511.00561.pdf

May 23, 2016 - Hacker Dojo

Compressed networks, reducing flops by pruning

https://arxiv.org/pdf/1510.00149.pdf

http://arxiv.org/pdf/1602.07360v3.pdf

May 16, 2016

Word2Vec meets LDA:

http://arxiv.org/pdf/1605.02019v1.pdf - Paper

https://twitter.com/chrisemoody - Chris Moody's twiter with links to slides etc.

http://qpleple.com/topic-coherence-to-evaluate-topic-models/ - writeup on topic coherence

May 9, 2016

https://arxiv.org/pdf/1603.05027v2.pdf - Update on microsoft resnet - identity mapping

http://gitxiv.com/posts/MwSDm6A4wPG7TcuPZ/recurrent-batch-normalization - batch normalization w. RNN

May 2, 2016

Go playing DQN - AlphaGo

https://gogameguru.com/i/2016/03/deepmind-mastering-go.pdf

https://m.youtube.com/watch?sns=em&v=pgX4JSv4J70 - video of slide presentation on paper

https://en.m.wikipedia.org/wiki/List_of_Go_games#Lee.27s_Broken_Ladder_Game - Handling "ladders" in alphgo

https://en.m.wikipedia.org/wiki/Ladder_(Go) - ladders in go


April 25, 2016 - Microsoft Resnet

The Paper

http://arxiv.org/pdf/1512.03385v1.pdf

References:

http://arxiv.org/pdf/1603.05027v2.pdf - Identity mapping paper

Code:

https://keunwoochoi.wordpress.com/2016/03/09/residual-networks-implementation-on-keras/ - keras code

https://github.com/ry/tensorflow-resnet/blob/master/resnet.py - tensorflow code

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/skflow/resnet.py


April 18, 2016 - Batch Normalization

The Paper
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
http://gitxiv.com/posts/MwSDm6A4wPG7TcuPZ/recurrent-batch-normalization - Batch Normalization for RNN


April 11, 2016 - Atari Game Playing DQN

The Paper https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf)

Related references:

This adds 'soft' and 'hard' attention and the 4 frames are replaced with an LSTM layer:

http://gitxiv.com/posts/NDepNSCBJtngkbAW6/deep-attention-recurrent-q-network

http://home.uchicago.edu/~arij/journalclub/papers/2015_Mnih_et_al.pdf - Nature Paper

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html - videos at the bottom of the page

http://llcao.net/cu-deeplearning15/presentation/DeepMindNature-preso-w-David-Silver-RL.pdf - David Silver's slides

http://www.cogsci.ucsd.edu/~ajyu/Teaching/Cogs118A_wi09/Class0226/dayan_watkins.pdf

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html - David Silver

Implementation Examples:

http://stackoverflow.com/questions/35394446/why-doesnt-my-deep-q-network-master-a-simple-gridworld-tensorflow-how-to-ev?rq=1

http://www.danielslater.net/2016/03/deep-q-learning-pong-with-tensorflow.html


March 3, 2016 Gated Feedback RNN

The Paper

"Gated RNN" (http://arxiv.org/pdf/1502.02367v4.pdf

-Background Material

http://arxiv.org/pdf/1506.00019v4.pdf - Lipton's excellent review of RNN
http://www.nehalemlabs.net/prototype/blog/2013/10/10/implementing-a-recurrent-neural-network-in-python/ - Discussion of RNN and theano code for Elman network - Tiago Ramalho
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf - Hochreiter's original paper on LSTM
https://www.youtube.com/watch?v=izGl1YSH_JA - Hinton video on LSTM

-Skylar Payne's GF RNN code
https://github.com/skylarbpayne/hdDeepLearningStudy/tree/master/tensorflow

-Slides https://docs.google.com/presentation/d/1d2keyJxRlDcD1LTl_zjS3i45xDIh2-QvPWU3Te29TuM/edit?usp=sharing
https://github.com/eadsjr/GFRNNs-nest/tree/master/diagrams/diagrams_formula

Reviews

http://www.computervisionblog.com/2016/06/deep-learning-trends-iclr-2016.html
https://indico.io/blog/iclr-2016-takeaways/

About

Code etc for Hacker Dojo Deep Learning Study Group

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 49.6%
  • Jupyter Notebook 45.1%
  • Shell 5.3%