Skip to content

Commit

Permalink
init all
Browse files Browse the repository at this point in the history
  • Loading branch information
longcw committed Apr 18, 2018
0 parents commit 2026e71
Show file tree
Hide file tree
Showing 50 changed files with 3,223 additions and 0 deletions.
110 changes: 110 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
# Created by .ignore support plugin (hsz.mobi)
### Python template
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

# C extensions
*.so

# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST

# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/

# Translations
*.mo
*.pot

# Django stuff:
*.log
.static_storage/
.media/
local_settings.py

# Flask stuff:
instance/
.webassets-cache

# Scrapy stuff:
.scrapy

# Sphinx documentation
docs/_build/

# PyBuilder
target/

# Jupyter Notebook
.ipynb_checkpoints

# pyenv
.python-version

# celery beat schedule file
celerybeat-schedule

# SageMath parsed files
*.sage.py

# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/

# Spyder project settings
.spyderproject
.spyproject

# Rope project settings
.ropeproject

# mkdocs documentation
/site

# mypy
.mypy_cache/

*.o
data
.idea
6 changes: 6 additions & 0 deletions .idea/vcs.xml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

156 changes: 156 additions & 0 deletions bbox_setup.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

import os
from os.path import join as pjoin
import numpy as np
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext


def find_in_path(name, path):
"Find a file in a search path"
# adapted fom http://code.activestate.com/recipes/52224-find-a-file-given-a-search-path/
for dir in path.split(os.pathsep):
binpath = pjoin(dir, name)
if os.path.exists(binpath):
return os.path.abspath(binpath)
return None


def locate_cuda():
"""Locate the CUDA environment on the system
Returns a dict with keys 'home', 'nvcc', 'include', and 'lib64'
and values giving the absolute path to each directory.
Starts by looking for the CUDAHOME env variable. If not found, everything
is based on finding 'nvcc' in the PATH.
"""

# first check if the CUDAHOME env variable is in use
if 'CUDAHOME' in os.environ:
home = os.environ['CUDAHOME']
nvcc = pjoin(home, 'bin', 'nvcc')
else:
# otherwise, search the PATH for NVCC
default_path = pjoin(os.sep, 'usr', 'local', 'cuda', 'bin')
nvcc = find_in_path('nvcc', os.environ['PATH'] + os.pathsep + default_path)
if nvcc is None:
raise EnvironmentError('The nvcc binary could not be '
'located in your $PATH. Either add it to your path, or set $CUDAHOME')
home = os.path.dirname(os.path.dirname(nvcc))

cudaconfig = {'home': home, 'nvcc': nvcc,
'include': pjoin(home, 'include'),
'lib64': pjoin(home, 'lib64')}
for k, v in cudaconfig.items():
if not os.path.exists(v):
raise EnvironmentError('The CUDA %s path could not be located in %s' % (k, v))

return cudaconfig


CUDA = locate_cuda()

# Obtain the numpy include directory. This logic works across numpy versions.
try:
numpy_include = np.get_include()
except AttributeError:
numpy_include = np.get_numpy_include()


def customize_compiler_for_nvcc(self):
"""inject deep into distutils to customize how the dispatch
to gcc/nvcc works.
If you subclass UnixCCompiler, it's not trivial to get your subclass
injected in, and still have the right customizations (i.e.
distutils.sysconfig.customize_compiler) run on it. So instead of going
the OO route, I have this. Note, it's kindof like a wierd functional
subclassing going on."""

# tell the compiler it can processes .cu
self.src_extensions.append('.cu')

# save references to the default compiler_so and _comple methods
default_compiler_so = self.compiler_so
super = self._compile

# now redefine the _compile method. This gets executed for each
# object but distutils doesn't have the ability to change compilers
# based on source extension: we add it.
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
print(extra_postargs)
if os.path.splitext(src)[1] == '.cu':
# use the cuda for .cu files
self.set_executable('compiler_so', CUDA['nvcc'])
# use only a subset of the extra_postargs, which are 1-1 translated
# from the extra_compile_args in the Extension class
postargs = extra_postargs['nvcc']
else:
postargs = extra_postargs['gcc']

super(obj, src, ext, cc_args, postargs, pp_opts)
# reset the default compiler_so, which we might have changed for cuda
self.compiler_so = default_compiler_so

# inject our redefined _compile method into the class
self._compile = _compile


# run the customize_compiler
class custom_build_ext(build_ext):
def build_extensions(self):
customize_compiler_for_nvcc(self.compiler)
build_ext.build_extensions(self)


thisdir = os.path.dirname(os.path.abspath(__file__))
source_dir = os.path.join(thisdir, 'utils')
ext_modules = [
Extension(
"utils.cython_bbox",
[os.path.join(source_dir, "bbox.pyx")],
extra_compile_args={'gcc': ["-Wno-cpp", "-Wno-unused-function"]},
include_dirs=[numpy_include]
),

Extension(
"utils.nms.cpu_nms",
[os.path.join(source_dir, "nms", 'cpu_nms.pyx')],
extra_compile_args={'gcc': ["-Wno-cpp", "-Wno-unused-function"]},
include_dirs=[numpy_include]
),
Extension('utils.nms.gpu_nms',
[os.path.join(source_dir, "nms", 'gpu_nms.pyx'), os.path.join(source_dir, "nms", 'nms_kernel.cu')],
library_dirs=[CUDA['lib64']],
libraries=['cudart'],
language='c++',
runtime_library_dirs=[CUDA['lib64']],
# this syntax is specific to this build system
# we're only going to use certain compiler args with nvcc and not with gcc
# the implementation of this trick is in customize_compiler() below
extra_compile_args={'gcc': ["-Wno-unused-function"],
'nvcc': ['-arch=sm_35',
'--ptxas-options=-v',
'-c',
'--compiler-options',
"'-fPIC'"]},
include_dirs=[numpy_include, CUDA['include']]
),
]


if __name__ == '__main__':
setup(
name='utils',
ext_modules=ext_modules,
# inject our custom trigger
cmdclass={'build_ext': custom_build_ext},
)
Empty file added datasets/__init__.py
Empty file.
113 changes: 113 additions & 0 deletions datasets/mot_seq.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
import numpy as np
import os
import torch.utils.data as data
from scipy.misc import imread


"""
labels={'ped', ... % 1
'person_on_vhcl', ... % 2
'car', ... % 3
'bicycle', ... % 4
'mbike', ... % 5
'non_mot_vhcl', ... % 6
'static_person', ... % 7
'distractor', ... % 8
'occluder', ... % 9
'occluder_on_grnd', ... %10
'occluder_full', ... % 11
'reflection', ... % 12
'crowd' ... % 13
};
"""


def read_mot_results(filename, is_gt=False):
labels = {1, 7, -1}
targets = dict()
if os.path.isfile(filename):
with open(filename, 'r') as f:
for line in f.readlines():
linelist = line.split(',')
if len(linelist) < 7:
continue
fid = int(linelist[0])
targets.setdefault(fid, list())

if is_gt and ('MOT16-' in filename or 'MOT17-' in filename):
label = int(float(linelist[-2])) if len(linelist) > 7 else -1
if label not in labels:
continue
tlwh = tuple(map(float, linelist[2:7]))
target_id = int(linelist[1])

targets[fid].append((tlwh, target_id))

return targets


class MOTSeq(data.Dataset):
def __init__(self, root, det_root, seq_name, min_height, min_det_score):
self.root = root
self.seq_name = seq_name
self.min_height = min_height
self.min_det_score = min_det_score

self.im_root = os.path.join(self.root, self.seq_name, 'img1')
self.im_names = sorted([name for name in os.listdir(self.im_root) if os.path.splitext(name)[-1] == '.jpg'])

if det_root is None:
self.det_file = os.path.join(self.root, self.seq_name, 'det', 'det.txt')
else:
self.det_file = os.path.join(det_root, '{}.txt'.format(self.seq_name))
self.dets = read_mot_results(self.det_file, is_gt=False)

self.gt_file = os.path.join(self.root, self.seq_name, 'gt', 'gt.txt')
if os.path.isfile(self.gt_file):
self.gts = read_mot_results(self.gt_file, is_gt=True)
else:
self.gts = None

def __len__(self):
return len(self.im_names)

def __getitem__(self, i):
im_name = os.path.join(self.im_root, self.im_names[i])
# im = cv2.imread(im_name)
im = imread(im_name) # rgb
im = im[:, :, ::-1] # bgr


frame = i + 1
dets = self.dets.get(frame, [])
dets, track_ids = zip(*self.dets[frame]) if len(dets) > 0 else (np.empty([0, 5]), np.empty([0, 1]))
dets = np.asarray(dets)
tlwhs = dets[:, 0:4]
scores = dets[:, 4]

keep = (tlwhs[:, 3] >= self.min_height) & (scores > self.min_det_score)
tlwhs = tlwhs[keep]
scores = scores[keep]
track_ids = np.asarray(track_ids, dtype=np.int)[keep]

if self.gts is not None:
gts = self.gts.get(frame, [])
gt_tlwhs, gt_ids = zip(*self.gts[frame]) if len(gts) > 0 else (np.empty([0, 5]), np.empty([0, 1]))
gt_tlwhs = np.asarray(gt_tlwhs)
gt_tlwhs = gt_tlwhs[:, 0:4]
else:
gt_tlwhs, gt_ids = None, None

return im, tlwhs, scores, gt_tlwhs, gt_ids


def collate_fn(data):
return data[0]


def get_loader(root, det_root, name, min_height=0, min_det_score=-np.inf, num_workers=3):
dataset = MOTSeq(root, det_root, name, min_height, min_det_score)

data_loader = data.DataLoader(dataset, 1, False, num_workers=num_workers, collate_fn=collate_fn)

return data_loader
Loading

0 comments on commit 2026e71

Please sign in to comment.