嗨,大家好!
我是蔚来汽车[NIO]自动驾驶团队的一员,负责多传感器融合定位、SLAM等领域的研发工作。目前,我们正在寻找新的队友加入我们。
我们团队研发的技术已经在多个功能场景成功量产。例如,高速城快领航辅助驾驶[NOP+] 功能于2022年发布,截至2023年10月,已在累积服务里程超过1亿公里。今年,还推出了技术更为复杂的城区领航功能,并通过群体智能不断拓展其可用范围。同时,在11月份发布了独特的高速服务区领航[PSP] 体验,实现了高速到服务区换电场景的全流程自动化和全程领航体验。此外,我们团队也参与了一些基础功能背后的研发,如AEB、LCC等。未来还有更多令人期待的功能发发布,敬请期待。
如果你对计算机视觉、深度学习、SLAM、多传感器融合、组合惯导等技术有着扎实的背景,不论是全职还是实习,我们都欢迎你加入我们的团队。有兴趣的话,可以通过微信联系我们:YDSF16。
NIO社招内推码: B89PQMZ 投递链接: https://nio.jobs.feishu.cn/referral/m/position/detail/?token=MTsxNzAzMjY0NzE2NTYyOzY5ODI0NTE1OTI5OTgxOTI2NDg7NzI2MDc4NjA0ODI2Mjk2NTU0MQ
This repo is divided into two parts, one is the basic algorithm, in the library folder. The other is the actual multi-sensor fusion algorithm (e.g. SLAM), in the app folder.
Detailed derivations can be found in: https://www.zhihu.com/column/slamTech
opencv, ceres, Eigen
chmod +x build.sh
./build.sh
Fuse wheel, visual, and GNSS in an Extended Kalman Filter.
For visual-wheel fusion, please refer to: https://zhuanlan.zhihu.com/p/270670373
For fusing of GNSS data, please refer to: https://zhuanlan.zhihu.com/p/330880853
You can select the sensors to participate in the fusion through the configuration file.
sys_config.enable_plane_update: 1
sys_config.enable_gps_update: 1
We used the KAIST dataset to test our method. https://irap.kaist.ac.kr/dataset/
For examples, please refer to the Example folder.
./RunKAISTData ${REPO_PATH}/TinyGrapeKit/app/FilterFusion/params/KAIST.yaml ${KAIST_PATH}
For any issues, please feel free to contact Dongsheng Yang: [email protected], [email protected]