Official implementation of Exploring the Effectiveness of Appearance Descriptor in DeepSORT
Update on 2022/04: Our work is accpeted by IJCNN'22. Citation info has been updated.
git clone https://github.com/MrZilinXiao/Exploring-DeepSORT
cd Exploring-DeepSORT
pip install -r requirements.txt
This project provides a tool tool/MOT16crop.py
that turns MOT-like dataset to ReID dataset. Make sure dataset is cropped correctly in MOT16Cropped
before any experiments.
python genetic_sort_exp.py
Genetic-SORT reads configuration from config.yaml
by default.
# python multiexp.py --help
usage: multiexp.py [-h] [--exp_dir EXP_DIR] [--gpu GPU [GPU ...]] [--mot_eval_interval MOT_EVAL_INTERVAL]
optional arguments:
-h, --help show this help message and exit
--exp_dir EXP_DIR
--gpu GPU [GPU ...]
--mot_eval_interval MOT_EVAL_INTERVAL
You may designate multiple GPUs by python multiexp.py --gpu 0 1 2 3
to speed up training.
multiexp.py
will read every .yml
file in experiments
if EXP_DIR
is left default, and each YAML file corresponds to a experiment. An example experimental YAML file is like:
dataset: MOT16
backbone: resnet50
pretrained: false
input_size: !!python/tuple [256, 128]
loss:
type: softmax # available options: [softmax, triplet, softmax_triplet, softmax_center, softmax_triplet_center]
margin: 0.3 # valid only when using triplet loss
center_weight: 0.005 # valid only when using center loss
label_smoothing:
enable: false
epsilon: 0.1
sampler: softmax # available options: [softmax, triplet]
neck_feat: after
bnn_neck: false
warmup:
enable: false
method: linear
steps: !!python/tuple [10, 20]
factor: 1.0 / 3
max_epoch: 30
last_stride: 2
general:
batch_size: 128
num_workers: 4
max_epoch: 30
optim: Adam
lr: 3.5e-4
bias_lr_factor: 2
weight_decay: 5e-4
bias_weight_decay: 0.0
center_lr: 0.5
momentum: 0.9
transforms:
random_horizontal_flip_p: 0.5
padding: 10
random_erasing: false
random_erasing_p: 0.5
@INPROCEEDINGS{9892052,
author={Xiao, Zilin and Sun, Yanan},
booktitle={2022 International Joint Conference on Neural Networks (IJCNN)},
title={Exploring the Effectiveness of Appearance Descriptor in DeepSORT},
year={2022},
volume={},
number={},
pages={1-8},
doi={10.1109/IJCNN55064.2022.9892052}
}