Skip to content

Commit

Permalink
Merge pull request RobotLocomotion#1437 from RussTedrake/mpc
Browse files Browse the repository at this point in the history
simple mpc example for the double integrator
  • Loading branch information
RussTedrake committed Oct 22, 2015
2 parents df32355 + 054c541 commit d2d3b7a
Show file tree
Hide file tree
Showing 3 changed files with 88 additions and 2 deletions.
44 changes: 44 additions & 0 deletions drake/examples/DoubleIntegrator.m
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,50 @@ function drawfun(J,PI)
subplot(2,1,2); colorbar;
end

function runConvexDirtran
% Solve the min-time problem as a bisection search of
% linear programs

x0 = [-2; -2];
xf = zeros(2,1);
dt = .1;

A = [ 0, 1; 0 0]; B = [0 ; 1];
% x[n+1] = Ax[n] + Bu[n]
Ad = eye(2)+dt*A; Bd = dt*B;
% Ad = expm(A*dt); Bd = ... % would be slightly better...
discrete_time_system = LinearSystem([],[],Ad,Bd,eye(2),[]);

warning('off','optim:quadprog:NullHessian'); % I know I'm using QP to solve an LP...

for N = 50:100 % increase N until i find a feasible solution
% note: bisection search would be a lot more efficient, but it's in
% the noise here...

% constructs a QP with constraints x[n+1] = Ad*x[n] + Bd*u[n] set up
[prog,x_inds,u_inds] = dirtranModelPredictiveControl(discrete_time_system,N);

% add initial value constraint:
prog = addLinearConstraint(prog,LinearConstraint(x0,x0,eye(2)),x_inds(:,1));

% add final value constraint:
prog = addLinearConstraint(prog,LinearConstraint(xf,xf,eye(2)),x_inds(:,end));

% add input limit constraints
prog = addBoundingBoxConstraint(prog,BoundingBoxConstraint(-1*ones(N,1),1*ones(N,1)),u_inds);

prog = prog.setSolver('quadprog');
[x,objval,exitflag]=prog.solve();
if (exitflag>0)
N
plot(x(x_inds(1,:)),x(x_inds(2,:)),'b',x(x_inds(1,:)),x(x_inds(2,:)),'b.','LineWidth',2,'MarkerSize',15);
u = x(u_inds)
return
end
end

end

function runDirtran
% Simple example of Direct Transcription trajectory optimization

Expand Down
10 changes: 8 additions & 2 deletions drake/solvers/QuadraticProgram.m
Original file line number Diff line number Diff line change
Expand Up @@ -218,8 +218,14 @@
result = gurobi(model,params);

info = strcmp(result.status,'OPTIMAL');
x = result.x;
objval = result.objval;
if (info)
x = result.x;
objval = result.objval;
else
x=[];
objval=[];
return
end

if (size(obj.Ain,1)>0 || ~isempty(obj.x_lb) || ~isempty(obj.x_ub))
% note: result.slack(for Ain indices) = bin-Ain*x
Expand Down
36 changes: 36 additions & 0 deletions drake/systems/AffineSystem.m
Original file line number Diff line number Diff line change
Expand Up @@ -386,6 +386,42 @@

sys = setSampleTime(sys,obj.getSampleTime);
end


function [prog,x_inds,u_inds] = dirtranModelPredictiveControl(obj,N)
% sets up a Quadratic Program with the dynamics constraints
% x[n+1] = Ad*x[n] + Bd*u[n] + xdn0;
if ~isDT(obj)
error('not implemented yet');
end

% decision variables:
% x[0],x[1],...,x[N], u[0],...,u[N-1]
num_x = obj.num_xd;
x_inds = reshape(1:num_x*(N+1),num_x,N+1);
u_inds = numel(x_inds) + reshape(1:obj.num_u*N,obj.num_u,N);

num_vars = numel(x_inds)+numel(u_inds);

Aeq = zeros(num_x*N,num_vars);
beq = zeros(num_x*N,1);

for i=1:N % todo: vectorize this
c_inds = num_x*(i-1)+(1:num_x);

% x[n+1]
Aeq(c_inds,x_inds(:,i+1)) = eye(num_x);
% -Ad*x[n]
Aeq(c_inds,x_inds(:,i)) = -obj.Ad;
% -Bd*u[n]
Aeq(c_inds,u_inds(:,i)) = -obj.Bd;

% xdn0
beq(c_inds) = obj.xdn0;
end

prog = QuadraticProgram(zeros(num_vars),zeros(num_vars,1),[],[],Aeq,beq);
end
end

properties
Expand Down

0 comments on commit d2d3b7a

Please sign in to comment.