Skip to content

NickLi11/practical_machine_learning

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Practical Machine Learning

Implementation of some machine learning algorithms


The following algorithms/use-cases are implemented to date:

  1. Gaussian Mixture Models
  2. Who should host the party? - Geometric Median
  3. Evaluating K-Means Clustering
  4. Multi-Layer Perceptron (MLP) in Keras
  5. Multi-Layer Perceptron (MLP) in PyTorch
  6. t-Distributed Stochastic Neighbor Embedding (t-SNE)
  7. File handling (.JSON/.TXT/.PNG/.H5/.PARQUET/.NPY/.PKL)
  8. Web Scraping using Beautiful Soup in Python
  9. Saving/loading/converting deep learning models - PyTorch, Keras, ONNX, TFLite
  10. Serving Sentiment Analysis Model using Flask API
  11. Understanding statistical concepts - CDF, Sampling, Law of Large Numbers
  12. Plotting Decision Boundaries
  13. Monte Carlo Simulations
  14. Understanding Non-Maximal Suppression (NMS) in Image Processing
  15. Understanding Kalman Filters
  16. Mixed Precision Training using TPU (Google Colab)
  17. Understanding Self-attention in NLP
  18. Building Knowledge Graph on MovieLens 1M (ML1M) Dataset with Networkx
  19. Implementing PageRank algorithm on famous social networks
  20. Building recommendation system on ML1M with PageRank
  21. Implementing RecWalk on ML1M
  22. Understanding various optimizers - GD, SGD, Momentum, AdaGrad, RMSProp, Adam
  23. GLoVe implementation from scratch: Paper
  24. Sparse Latent Semantic Analysis (LSA): Paper
  25. Latent Dirichlet Allocation (LDA) - Estimating topic distributions with Gibbs Sampling (Part 1/2) Video
  26. Latent Dirichlet Allocation (LDA) and its applications - Probabilistic generative model (Part 2/2) Video
  27. Word Sense Disambiguation - Knowledge based approaches - Lesk, Walker, Random Walk (Part 1/2) Video
  28. Word Sense Disambiguation - ML based approaches - Decision List, Yarowsky's, HyperLex (Part 2/2) Video
  29. Projected Gradient Descent - Gradient Descent with constraints
  30. Support Vector Machines (SVM) from scratch
  31. Optimization beyond Gradient Descent - Linear SVM, Logistic Regression, Non-Negative OLS Regression
  32. Neural Networks - Building MLP from scratch
  33. AutoGluon - AutoML
  34. RNN from scratch Video
  35. Matrix Factorization based Collaborative Filtering using Gradient Descent

About

Implementation of some machine learning algorithms

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%