This repository contains the official implementation of "Separate Anything You Describe".
We introduce AudioSep, a foundation model for open-domain sound separation with natural language queries. AudioSep demonstrates strong separation performance and impressive zero-shot generalization ability on numerous tasks such as audio event separation, musical instrument separation, and speech enhancement. Check the separated audio examples in the Demo Page!
- AudioSep training & finetuning code release.
- AudioSep base model checkpoint release.
- Evaluation benchmark release.
Clone the repository and setup the conda environment:
git clone https://github.com/Audio-AGI/AudioSep.git && \
cd AudioSep && \
conda env create -f environment.yml && \
conda activate AudioSep
Download model weights at checkpoint/
.
from pipeline import build_audiosep, inference
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = build_audiosep(
config_yaml='config/audiosep_base.yaml',
checkpoint_path='checkpoint/audiosep_base_4M_steps.ckpt',
device=device)
audio_file = 'path_to_audio_file'
text = 'textual_description'
output_file='separated_audio.wav'
# AudioSep processes the audio at 32 kHz sampling rate
inference(model, audio_file, text, output_file, device)
To utilize your audio-text paired dataset:
-
Format your dataset to match our JSON structure. Refer to the provided template at
datafiles/template.json
. -
Update the
config/audiosep_base.yaml
file by listing your formatted JSON data files underdatafiles
. For example:
data:
datafiles:
- 'datafiles/your_datafile_1.json'
- 'datafiles/your_datafile_2.json'
...
Train AudioSep from scatch:
python train.py --workspace workspace/AudioSep --config_yaml config/audiosep_base.yaml --resume_checkpoint_path checkpoint/ ''
Finetune AudioSep from pretrained checkpoint:
python train.py --workspace workspace/AudioSep --config_yaml config/audiosep_base.yaml --resume_checkpoint_path path_to_checkpoint
If you found this tool useful, please consider citing
@article{liu2023separate,
title={Separate Anything You Describe},
author={Liu, Xubo and Kong, Qiuqiang and Zhao, Yan and Liu, Haohe and Yuan, Yi and Liu, Yuzhuo and Xia, Rui and Wang, Yuxuan and Plumbley, Mark D and Wang, Wenwu},
journal={arXiv preprint arXiv:2308.05037},
year={2023}
}
@inproceedings{liu22w_interspeech,
title={Separate What You Describe: Language-Queried Audio Source Separation},
author={Liu, Xubo and Liu, Haohe and Kong, Qiuqiang and Mei, Xinhao and Zhao, Jinzheng and Huang, Qiushi and Plumbley, Mark D and Wang, Wenwu},
year=2022,
booktitle={Proc. Interspeech},
pages={1801--1805},
}