-
Notifications
You must be signed in to change notification settings - Fork 103
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
304 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,304 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"<sqlite3.Connection at 0x27d37bc18f0>" | ||
] | ||
}, | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"import sqlite3\n", | ||
"sqlite3.connect('user_hits.db')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"conn = sqlite3.connect('user_hits.db') " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"df_user_geo_hits = pd.read_sql_query(\"select * from tbl_user_geo_hits;\", conn)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": { | ||
"collapsed": false, | ||
"scrolled": true | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<div>\n", | ||
"<table border=\"1\" class=\"dataframe\">\n", | ||
" <thead>\n", | ||
" <tr style=\"text-align: right;\">\n", | ||
" <th></th>\n", | ||
" <th>userid</th>\n", | ||
" <th>date</th>\n", | ||
" <th>city</th>\n", | ||
" <th>state</th>\n", | ||
" </tr>\n", | ||
" </thead>\n", | ||
" <tbody>\n", | ||
" <tr>\n", | ||
" <th>0</th>\n", | ||
" <td>1</td>\n", | ||
" <td>1/1/2019</td>\n", | ||
" <td>Dover</td>\n", | ||
" <td>DE</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>1</th>\n", | ||
" <td>3</td>\n", | ||
" <td>1/1/2019</td>\n", | ||
" <td>El Paso</td>\n", | ||
" <td>TX</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>2</th>\n", | ||
" <td>1</td>\n", | ||
" <td>1/2/2019</td>\n", | ||
" <td>Dover</td>\n", | ||
" <td>DE</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>3</th>\n", | ||
" <td>2</td>\n", | ||
" <td>1/2/2019</td>\n", | ||
" <td>Philadelphia</td>\n", | ||
" <td>PA</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>4</th>\n", | ||
" <td>3</td>\n", | ||
" <td>1/2/2019</td>\n", | ||
" <td>El Paso</td>\n", | ||
" <td>TX</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>5</th>\n", | ||
" <td>1</td>\n", | ||
" <td>1/3/2019</td>\n", | ||
" <td>Dover</td>\n", | ||
" <td>DE</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>6</th>\n", | ||
" <td>2</td>\n", | ||
" <td>1/3/2019</td>\n", | ||
" <td>Philadelphia</td>\n", | ||
" <td>PA</td>\n", | ||
" </tr>\n", | ||
" </tbody>\n", | ||
"</table>\n", | ||
"</div>" | ||
], | ||
"text/plain": [ | ||
" userid date city state\n", | ||
"0 1 1/1/2019 Dover DE\n", | ||
"1 3 1/1/2019 El Paso TX\n", | ||
"2 1 1/2/2019 Dover DE\n", | ||
"3 2 1/2/2019 Philadelphia PA\n", | ||
"4 3 1/2/2019 El Paso TX\n", | ||
"5 1 1/3/2019 Dover DE\n", | ||
"6 2 1/3/2019 Philadelphia PA" | ||
] | ||
}, | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"df_user_geo_hits.head(10)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"df_groupby_SQL = pd.read_sql_query(\"select city, state, count(*) as hits from tbl_user_geo_hits group by 1, 2;\", conn)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<div>\n", | ||
"<table border=\"1\" class=\"dataframe\">\n", | ||
" <thead>\n", | ||
" <tr style=\"text-align: right;\">\n", | ||
" <th></th>\n", | ||
" <th>city</th>\n", | ||
" <th>state</th>\n", | ||
" <th>hits</th>\n", | ||
" </tr>\n", | ||
" </thead>\n", | ||
" <tbody>\n", | ||
" <tr>\n", | ||
" <th>0</th>\n", | ||
" <td>Dover</td>\n", | ||
" <td>DE</td>\n", | ||
" <td>3</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>1</th>\n", | ||
" <td>El Paso</td>\n", | ||
" <td>TX</td>\n", | ||
" <td>2</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>2</th>\n", | ||
" <td>Philadelphia</td>\n", | ||
" <td>PA</td>\n", | ||
" <td>2</td>\n", | ||
" </tr>\n", | ||
" </tbody>\n", | ||
"</table>\n", | ||
"</div>" | ||
], | ||
"text/plain": [ | ||
" city state hits\n", | ||
"0 Dover DE 3\n", | ||
"1 El Paso TX 2\n", | ||
"2 Philadelphia PA 2" | ||
] | ||
}, | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"df_groupby_SQL" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"df_groupby_city_state = df_user_geo_hits.groupby([\"city\", \"state\"]) [\"userid\"].count() #df.groupby(\"state\")[\"last_name\"].count()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"city state\n", | ||
"Dover DE 3\n", | ||
"El Paso TX 2\n", | ||
"Philadelphia PA 2\n", | ||
"Name: userid, dtype: int64" | ||
] | ||
}, | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"df_groupby_city_state.head()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"conn.close()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.5.1" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |