Skip to content

PangXuejiao/DanishFungiDataset

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Danish Fungi 2020 - Not Just Another Image Recognition Dataset

By Lukas Picek et al. MAIL

Introduction

Supplementary material to: Danish Fungi 2020 - Not Just Another Image Recognition Dataset

In order to support research in fine-grained plant classification and to allow full reproducibility of our results, we share the Training Logs and Trained scripts.

  • The Images, Checkpoints and Metadata are not included based on size constrains and will be published after the review.

Training Data

Available at -> https://sites.google.com/view/danish-fungi-dataset

Training

  1. Download PyTorch NGC Docker Image and RUN docker container
docker pull nvcr.io/nvidia/pytorch:21.02-py3
docker run --gpus all -it --rm -v local_dir:container_dir nvcr.io/nvidia/pytorch:21.02-py3
  1. Install dependencies inside docker container
pip install pandas seaborn timm albumentation tqdm efficientnet_pytorch pretrainedmodels
  1. RUN jupyterlab and start training / experiments
jupyter lab --ip 0.0.0.0 --port 8888 --allow-root
  • Check your paths!

Results

CNN Performance Evaluation

Classification performance of selected CNN architectures on DF20 and DF20 - Mini. All networks share the settings described in Section 6.1 and were trained on 299×299 images.

Top1 [%] Top3 [%] F1 Top1 [%] Top3 [%] F1
MobileNet-V2 65.74 83.65 0.546 69.51 84.55 0.602
ResNet-18 63.24 82.23 0.526 67.21 82.71 0.580
ResNet-34 63.60 81.68 0.522 69.92 84.72 0.605
ResNet-50 69.26 85.03 0.590 73.15 87.03 0.643
EfficientNet-B0 69.12 85.66 0.579 73.63 87.51 0.652
EfficientNet-B1 69.23 85.38 0.592 74.11 87.62 0.658
EfficientNet-B3 70.05 85.27 0.595 74.73 88.01 0.662
EfficientNet-B5 66.87 84.04 0.560 73.07 86.91 0.636
Inception-V3 65.30 82.83 0.530 71.45 85.64 0.622
InceptionResnet-V2 67.42 83.60 0.559 72.68 86.37 0.629
Inception-V4 67.50 83.63 0.572 74.19 87.63 0.655
SE-ResNeXt-101-32x4d 72.39 86.57 0.635 76.73 89.09 0.691
---------------- ---- ---- ---- ---- ---- ----
Dataset DF20 DF20 DF20 DF20M DF20M DF20M

ViT x CNN Performance Evaluation

Classification results of selected CNN and ViT architectures on DF20 and DF20,-,Mini dataset for two input resolutions [299𐄂299, 384𐄂384].

Top1 [%] Top3 [%] F1 Top1 [%] Top3 [%] F1
EfficientNet-B0 65.66 83.35 0.531 70.38 85.18 0.613
EfficientNet-B3 66.90 83.49 0.537 𐄂 𐄂 𐄂
SE-ResNeXt-101 69.48 85.58 0.593 𐄂 𐄂 𐄂
ViT-Base/16 69.37 86.54 0.589 70.38 85.18 0.613
ViT-Large/16 70.71 86.51 0.599 75.34 88.11 0.679
---------------- ---- ---- ---- ---- ---- ----
Dataset DF20 DF20 DF20 DF20M DF20M DF20M
Top1 [%] Top3 [%] F1 Top1 [%] Top3 [%] F1
EfficientNet-B0 70.22 85.69 0.596 75.27 88.65 0.670
EfficientNet-B3 72.09 87.17 0.624 𐄂 𐄂 𐄂
SE-ResNeXt-101 72.34 87.53 0.631 𐄂 𐄂 𐄂
ViT-Base/16 74.84 88.74 0.655 79.40 90.93 0.724
ViT-Large/16 75.96 89.37 0.664 81.25 91.93 0.747
---------------- ---- ---- ---- ---- ---- ----
Dataset DF20 DF20 DF20 DF20M DF20M DF20M

Metadata Usage Experiment

Performance gains from Fungus observation metadata: H - Habitat, S - Substrate, M - Month, and their combinations, on DF20 and DF20-Mini. ViT-Base/16 with image size 224𐄂224.

DF20-Mini

H M S Top1 [%] Top3 [%] F1
𐄂 𐄂 𐄂 73.45 87.15 0.658
𐄂 𐄂 +2.00 +1.42 +0.036
𐄂 𐄂 +1.37 +1.23 +0.024
𐄂 𐄂 +0.98 +0.96 +0.016
𐄂 +2.30 +2.10 +0.039
𐄂 +2.92 +2.41 +0.051
𐄂 +3.16 +2.50 +0.056
+3.58 +3.05 +0.062

DF20

H M S Top1 Top3 F1
𐄂 𐄂 𐄂 69.37 86.54 0.589
𐄂 𐄂 +1.70 +1.10 +0.029
𐄂 𐄂 +0.77 +0.19 +0.011
𐄂 𐄂 +0.85 +0.69 +0.014
𐄂 +1.29 +0.80 +0.020
𐄂 +2.75 +2.01 +0.043
𐄂 +2.20 +1.24 +0.037
+2.88 +1.65 +0.047

License

The code and dataset is released under the BSD License. There is some limitations for commercial usage. In other words, the training data, metadata, and models are are available only for non-commercial research purposes only.

Citation

If you use Danish Fungi for your research or aplication, please consider citation:

@article{picek2021danish,
title={Danish Fungi 2020 - Not Just Another Image Recognition Dataset},
author={Lukáš Picek and Milan Šulc and Jiří Matas and Jacob Heilmann-Clausen and Thomas S. Jeppesen and Thomas Læssøe and Tobias Frøslev},
year={2021},
eprint={2103.10107},
archivePrefix={arXiv},
primaryClass={cs.CV}
}

Contact

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%