forked from PaddlePaddle/PaddleScience
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Example] Estimating the Elastic Modulus of the Heart Based on PINN (P…
…addlePaddle#987) * merge code of upstream * merge code of upstream * merge code of upstream --------- Co-authored-by: HydrogenSulfate <[email protected]>
- Loading branch information
1 parent
755754b
commit d051f91
Showing
3 changed files
with
672 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
defaults: | ||
- ppsci_default | ||
- TRAIN: train_default | ||
- TRAIN/ema: ema_default | ||
- TRAIN/swa: swa_default | ||
- EVAL: eval_default | ||
- INFER: infer_default | ||
- hydra/job/config/override_dirname/exclude_keys: exclude_keys_default | ||
- _self_ | ||
hydra: | ||
run: | ||
# dynamic output directory according to running time and override name | ||
dir: outputs_heart/${now:%Y-%m-%d}/${now:%H-%M-%S}/${hydra.job.override_dirname} | ||
job: | ||
name: ${mode} # name of logfile | ||
chdir: false # keep current working direcotry unchaned | ||
callbacks: | ||
init_callback: | ||
_target_: ppsci.utils.callbacks.InitCallback | ||
sweep: | ||
# output directory for multirun | ||
dir: ${hydra.run.dir} | ||
subdir: ./ | ||
|
||
# general settings | ||
mode: train # running mode: train/eval | ||
seed: 2024 | ||
output_dir: ${hydra:run.dir} | ||
log_freq: 200 | ||
|
||
# set geometry | ||
GEOM_PATH: ./stl/heart.stl | ||
BASE_PATH: ./stl/base.stl | ||
ENDO_PATH: ./stl/endo.stl | ||
EPI_PATH: ./stl/epi.stl | ||
DATA_PATH: ./data/inverse.csv | ||
|
||
# set working condition | ||
E: 9 # truth | ||
nu: 0.45 | ||
P: 1.064 # kPa | ||
|
||
# model settings | ||
MODEL: | ||
input_keys: ["x","y","z"] | ||
output_keys: ["u","v","w"] | ||
num_layers: 10 | ||
hidden_size: 20 | ||
activation: "silu" | ||
weight_norm: true | ||
|
||
# training settings | ||
TRAIN: | ||
epochs: 100 | ||
iters_per_epoch: 1000 | ||
lr_scheduler: | ||
epochs: ${TRAIN.epochs} | ||
iters_per_epoch: ${TRAIN.iters_per_epoch} | ||
learning_rate: 1.0e-3 | ||
gamma: 0.95 | ||
decay_steps: 3000 | ||
by_epoch: false | ||
batch_size: | ||
bc_base: 256 | ||
bc_endo: 2048 | ||
bc_epi: 32 | ||
interior: 8000 | ||
weight: | ||
bc_base: {"u": 0.1, "v": 0.1, "w": 0.1} | ||
bc_endo: {"traction_x": 0.1, "traction_y": 0.1, "traction_z": 0.1} | ||
bc_epi: {"traction": 0.1} | ||
interior: {"hooke_x": 0.1, "hooke_y": 0.1, "hooke_z": 0.1} | ||
save_freq: 20 | ||
eval_freq: 20 | ||
eval_during_train: true | ||
eval_with_no_grad: true | ||
pretrained_model_path: null | ||
checkpoint_path: null | ||
|
||
# evaluation settings | ||
EVAL: | ||
pretrained_model_path: null | ||
eval_with_no_grad: true | ||
batch_size: 1000 | ||
num_vis: 100000 | ||
# path for saved param E | ||
param_E_path: null |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
|
||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
|
||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import annotations | ||
|
||
from typing import Optional | ||
from typing import Tuple | ||
from typing import Union | ||
|
||
import paddle | ||
import sympy as sp | ||
|
||
from ppsci.equation.pde import base | ||
|
||
|
||
class Hooke_Inverse(base.PDE): | ||
r"""equations for umbrella opening force. | ||
Use either (E, nu) or (lambda_, mu) to define the material properties. | ||
$$ | ||
\begin{pmatrix} | ||
t_{xx} \\ t_{yy} \\ t_{zz} \\ t_{xy} \\ t_{xz} \\ t_{yz} \\ | ||
\end{pmatrix} | ||
= | ||
\begin{bmatrix} | ||
\frac{1}{E} & -\frac{v}{E} & -\frac{v}{E} & 0 & 0 & 0 \\ | ||
-\frac{v}{E} & \frac{1}{E} & -\frac{v}{E} & 0 & 0 & 0 \\ | ||
-\frac{v}{E} & -\frac{v}{E} & \frac{1}{E} & 0 & 0 & 0 \\ | ||
0 & 0 & 0 & \frac{1}{G} & 0 & 0 \\ | ||
0 & 0 & 0 & 0 & \frac{1}{G} & 0 \\ | ||
0 & 0 & 0 & 0 & 0 & \frac{1}{G} \\ | ||
\end{bmatrix} | ||
\begin{pmatrix} | ||
\varepsilon _{xx} \\ \varepsilon _{yy} \\ \varepsilon _{zz} \\ \varepsilon _{xy} \\ \varepsilon _{xz} \\ \varepsilon _{yz} \\ | ||
\end{pmatrix} | ||
$$ | ||
Args: | ||
E (paddle.base.framework.EagerParamBase): The Young's modulus. Learnable parameter. | ||
nu (Union[float, str]): The Poisson's ratio. | ||
P (Union[float, str]): Left ventricular cavity pressure. | ||
dim (int, optional): Dimension of the linear elasticity (2 or 3). Defaults to 3. | ||
time (bool, optional): Whether contains time data. Defaults to False. | ||
detach_keys (Optional[Tuple[str, ...]]): Keys used for detach during computing. | ||
Defaults to None. | ||
Examples: | ||
>>> import ppsci | ||
>>> E = paddle.create_parameter( | ||
... shape=[], | ||
... dtype=paddle.get_default_dtype(), | ||
... default_initializer=initializer.Constant(), | ||
... ) | ||
>>> pde = ppsci.equation.Hooke( | ||
... E=E, nu=cfg.nu, P=cfg.P, dim=3 | ||
... ) | ||
""" | ||
|
||
def __init__( | ||
self, | ||
E: paddle.base.framework.EagerParamBase, | ||
nu: Union[float, str], | ||
P: Union[float, str], | ||
dim: int = 3, | ||
time: bool = False, | ||
detach_keys: Optional[Tuple[str, ...]] = None, | ||
): | ||
super().__init__() | ||
self.detach_keys = detach_keys | ||
self.dim = dim | ||
self.time = time | ||
|
||
self.E = E | ||
self.learnable_parameters.append(self.E) | ||
E = self.create_symbols(self.E.name) | ||
|
||
t, x, y, z = self.create_symbols("t x y z") | ||
normal_x, normal_y, normal_z = self.create_symbols("normal_x normal_y normal_z") | ||
invars = (x, y) | ||
if time: | ||
invars = (t,) + invars | ||
if self.dim == 3: | ||
invars += (z,) | ||
|
||
u = self.create_function("u", invars) | ||
v = self.create_function("v", invars) | ||
w = self.create_function("w", invars) if dim == 3 else sp.Number(0) | ||
|
||
if isinstance(nu, str): | ||
nu = self.create_function(nu, invars) | ||
if isinstance(P, str): | ||
P = self.create_function(P, invars) | ||
|
||
self.nu = nu | ||
self.P = P | ||
|
||
# compute sigma | ||
sigma_xx = u.diff(x) | ||
sigma_yy = v.diff(y) | ||
sigma_zz = w.diff(z) if dim == 3 else sp.Number(0) | ||
sigma_xy = 0.5 * (u.diff(y) + v.diff(x)) | ||
sigma_xz = 0.5 * (u.diff(z) + w.diff(x)) if dim == 3 else sp.Number(0) | ||
sigma_yz = 0.5 * (v.diff(z) + w.diff(y)) if dim == 3 else sp.Number(0) | ||
|
||
# compute stress tensor t | ||
G = E / (2 * (1 + nu)) | ||
e = sigma_xx + sigma_yy + sigma_zz | ||
t_xx = 2 * G * (sigma_xx + nu / (1 - 2 * nu) * e) | ||
t_yy = 2 * G * (sigma_yy + nu / (1 - 2 * nu) * e) | ||
t_zz = 2 * G * (sigma_zz + nu / (1 - 2 * nu) * e) | ||
t_xy = 2 * sigma_xy * G | ||
t_xz = 2 * sigma_xz * G | ||
t_yz = 2 * sigma_yz * G | ||
|
||
# compute stress | ||
hooke_x = t_xx.diff(x) + t_xy.diff(y) + t_xz.diff(z) | ||
hooke_y = t_xy.diff(x) + t_yy.diff(y) + t_yz.diff(z) | ||
hooke_z = t_xz.diff(x) + t_yz.diff(y) + t_zz.diff(z) | ||
|
||
# compute traction splitly | ||
traction_x = t_xx * normal_x + t_xy * normal_y + t_xz * normal_z + P * normal_x | ||
traction_y = t_xy * normal_x + t_yy * normal_y + t_yz * normal_z + P * normal_y | ||
traction_z = t_xz * normal_x + t_yz * normal_y + t_zz * normal_z + P * normal_z | ||
|
||
# compute traction | ||
traction_x_ = t_xx * normal_x + t_xy * normal_y + t_xz * normal_z | ||
traction_y_ = t_xy * normal_x + t_yy * normal_y + t_yz * normal_z | ||
traction_z_ = t_xz * normal_x + t_yz * normal_y + t_zz * normal_z | ||
|
||
traction = ( | ||
traction_x_ * normal_x + traction_y_ * normal_y + traction_z_ * normal_z | ||
) | ||
|
||
# add hooke equations | ||
self.add_equation("hooke_x", hooke_x) | ||
self.add_equation("hooke_y", hooke_y) | ||
if self.dim == 3: | ||
self.add_equation("hooke_z", hooke_z) | ||
|
||
# add traction equations | ||
self.add_equation("traction_x", traction_x) | ||
self.add_equation("traction_y", traction_y) | ||
if self.dim == 3: | ||
self.add_equation("traction_z", traction_z) | ||
|
||
# add combined traction equations | ||
self.add_equation("traction", traction) | ||
|
||
self._apply_detach() |
Oops, something went wrong.