This repository contains the code and pipelines to train named entity recognition and relation classification models for visual acuity in clinical letters.
## Training
Train with default config (defined in `config/train_config.json`)
```bash
python train.py
Override config's parameters by passing optional arguments
CUDA_VISIBLE_DEVICES=1 python train.py \
--checkpoint 'models/name' \
--max_epoch 150
## Training
USE -- jupyter notebook provided in notebook folder.
Other model/checkpoint can be from huggingface: dmis-lab/biobert-v1.1
, bert-base-cased
, etc.
Note: Check config/train_config.json
before training