Skip to content

PriseEzio/senet.pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SENet.pytorch

An implementation of SENet, proposed in Squeeze-and-Excitation Networks by Jie Hu, Li Shen and Gang Sun, who are the winners of ILSVRC 2017 classification competition.

Now SE-ResNet (18, 34, 50, 101, 152/20, 32) and SE-Inception-v3 are implemented.

  • python cifar.py runs SE-ResNet20 with Cifar10 dataset.

  • python imagenet.py and python -m torch.distributed.launch --nproc_per_node=${NUM_GPUS} imagenet.py run SE-ResNet50 with ImageNet(2012) dataset,

    • You need to prepare dataset by yourself in ~/.torch/data or set an enviroment variable IMAGENET_ROOT=${PATH_TO_YOUR_IMAGENET}
    • First download files and then follow the instruction.
    • The number of workers and some hyper parameters are fixed so check and change them if you need.
    • This script uses all GPUs available. To specify GPUs, use CUDA_VISIBLE_DEVICES variable. (e.g. CUDA_VISIBLE_DEVICES=1,2 to use GPU 1 and 2)

For SE-Inception-v3, the input size is required to be 299x299 as the original Inception.

Pre-requirements

The codebase is tested on the following setting.

  • Python>=3.8
  • PyTorch>=1.6.0
  • torchvision>=0.7

For training

To run cifar.py or imagenet.py, you need

hub

You can use some SE-ResNet (se_resnet{20, 56, 50, 101}) via torch.hub.

import torch.hub
hub_model = torch.hub.load(
    'moskomule/senet.pytorch',
    'se_resnet20',
    num_classes=10)

Also, a pretrained SE-ResNet50 model is available.

import torch.hub
hub_model = torch.hub.load(
    'moskomule/senet.pytorch',
    'se_resnet50',
    pretrained=True,)

Result

SE-ResNet20/Cifar10

python cifar.py [--baseline]

Note that the CIFAR-10 dataset expected to be under ~/.torch/data.

ResNet20 SE-ResNet20 (reduction 4 or 8)
max. test accuracy 92% 93%

SE-ResNet50/ImageNet

python [-m torch.distributed.launch --nproc_per_node=${NUM_GPUS}] imagenet.py

The option [-m ...] is for distributed training. Note that the Imagenet dataset is expected to be under ~/.torch/data or specified as IMAGENET_ROOT=${PATH_TO_IMAGENET}.

The initial learning rate and mini-batch size are different from the original version because of my computational resource .

ResNet SE-ResNet
max. test accuracy(top1) 76.15 %(*) 77.06% (**)
# !wget https://github.com/moskomule/senet.pytorch/releases/download/archive/seresnet50-60a8950a85b2b.pkl

senet = se_resnet50(num_classes=1000)
senet.load_state_dict(torch.load("seresnet50-60a8950a85b2b.pkl"))

Contribution

I cannot maintain this repository actively, but any contributions are welcome. Feel free to send PRs and issues.

References

paper

authors' Caffe implementation

About

PyTorch implementation of SENet

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%