forked from wbbhcb/stock_market
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
1,562 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Mon Apr 6 17:14:00 2020 | ||
@author: hcb | ||
""" | ||
import pandas as pd | ||
import numpy as np | ||
import os | ||
import tushare as ts | ||
from mootdx.quotes import Quotes | ||
import datetime | ||
mytoken = '6e23da5efe6c72a37b1536eb7a5c0a8d0bc0ff02b08e834d6102a8bd' # ***是tushare的api,大家可以自己到tushare上注册获取api,(免费的) | ||
ts.set_token(mytoken) | ||
ts.set_token(mytoken) | ||
save_path = 'stock' | ||
pro = ts.pro_api() | ||
|
||
def compute_score(index_df, i): | ||
score = 0 | ||
tmp_rate = (index_df['close'][i]-index_df['ma3'][i]) / index_df['ma3'][i] | ||
if tmp_rate>=0: | ||
score += 1 | ||
|
||
tmp_rate = (index_df['close'][i]-index_df['ma10'][i]) / index_df['ma10'][i] | ||
if tmp_rate>=0: | ||
score += 2 | ||
|
||
tmp_rate = (index_df['close'][i]-index_df['ma20'][i]) / index_df['ma20'][i] | ||
if tmp_rate>=0: | ||
score += 2 | ||
|
||
tmp_rate = (index_df['close'][i]-index_df['ma30'][i]) / index_df['ma30'][i] | ||
if tmp_rate>=0: | ||
score += 1 | ||
|
||
if index_df['ma3_trend'][i] == 1: | ||
score += 1 | ||
|
||
if index_df['ma10_trend'][i] == 1: | ||
score += 2 | ||
elif index_df['ma10_trend'][i] == 0: | ||
score += 1 | ||
|
||
if index_df['ma20_trend'][i] == 1: | ||
score += 2 | ||
elif index_df['ma20_trend'][i] == 0: | ||
score += 1 | ||
|
||
if index_df['Collapse_sum'][i] > 0: | ||
score = score - 2 | ||
|
||
if index_df['rate'][i] > 0.01: | ||
score = score + 2 | ||
|
||
if (index_df['close'][i] - index_df['low'][i])/index_df['low'][i] > 0.015: | ||
if abs((index_df['close'][i]-index_df['min'][i])/index_df['min'][i])<0.03: | ||
score = score + 3 | ||
|
||
if score < 0: | ||
score = 0 | ||
|
||
if score > 10: | ||
score=10 | ||
return score | ||
|
||
|
||
def compute_score2(df, i): | ||
score = 0 | ||
tmp_rate = (df['close'][i]-df['ma3'][i]) / df['ma3'][i] | ||
if tmp_rate>=0: | ||
score += 1 | ||
|
||
tmp_rate = (df['close'][i]-df['ma10'][i]) / df['ma10'][i] | ||
if tmp_rate>=0: | ||
score += 2 | ||
|
||
tmp_rate = (df['close'][i]-df['ma20'][i]) / df['ma20'][i] | ||
if tmp_rate>=0: | ||
score += 2 | ||
|
||
tmp_rate = (df['close'][i]-df['ma30'][i]) / df['ma30'][i] | ||
if tmp_rate>=0: | ||
score += 1 | ||
|
||
if df['ma3_trend'][i] == 1: | ||
score += 1 | ||
|
||
if df['ma10_trend'][i] == 1: | ||
score += 2 | ||
elif df['ma10_trend'][i] == 0: | ||
score += 1 | ||
|
||
if df['ma20_trend'][i] == 1: | ||
score += 2 | ||
elif df['ma20_trend'][i] == 0: | ||
score += 1 | ||
|
||
if df['ma30_trend'][i] == 1: | ||
score += 1 | ||
|
||
if score < 0: | ||
score = 0 | ||
|
||
if score > 10: | ||
score=10 | ||
return score | ||
|
||
|
||
def comput_space(startdate=20040101, enddate=20200407): | ||
index_df = pro.index_daily(ts_code='000001.SH', | ||
start_date=startdate, | ||
end_date=enddate, | ||
fields='ts_code, trade_date, open, high, low, close, pre_close, change, pct_chg, ' | ||
'vol, amount') | ||
index_df = index_df.sort_values('trade_date', ascending=True).reset_index(drop=True) | ||
|
||
index_df['rate'] = (index_df['close'] - index_df['pre_close']) / index_df['pre_close'] | ||
index_df['Collapse'] = index_df['rate'] < -0.02 | ||
index_df['Collapse_sum'] = index_df['Collapse'].rolling(4).sum() | ||
|
||
index_df['min'] = index_df['close'].rolling(180).min() | ||
index_df['max'] = index_df['close'].rolling(180).max() | ||
index_df = index_df.sort_values('trade_date', ascending=True).reset_index(drop=True) | ||
|
||
# 计算均线 | ||
for day in [3, 10, 20, 30]: | ||
index_df['ma'+str(day)] = index_df.close.rolling(day).mean() | ||
col = ['ma3', 'ma10', 'ma20', 'ma30'] | ||
tmp_df2 = index_df[col].shift(1) | ||
tmp_df3 = index_df[col].shift(2) | ||
for tmp_col in col: | ||
index_df[tmp_col + '_trend'] = 0 | ||
# tmp_df[tmp_col + '_shift_1'] = tmp_df2[tmp_col] | ||
# tmp_df[tmp_col _ 'shift_2'] = tmp_df3[tmp_col] | ||
index_df['rate1'] = (tmp_df2[tmp_col] - tmp_df3[tmp_col]) / (tmp_df3[tmp_col] + 0.00001) | ||
index_df['rate2'] = (index_df[tmp_col] - tmp_df2[tmp_col]) / (tmp_df2[tmp_col] + 0.00001) | ||
idx = (index_df['rate1'] > 0.002) #& (index_df['rate2'] > 0.006) | ||
index_df.loc[idx, tmp_col + '_trend'] = 1 # 趋势向上 | ||
|
||
idx = (index_df['rate1'] < -0.004) #& (index_df['rate2'] < -0.003) | ||
index_df.loc[idx, tmp_col + '_trend'] = 2 # 趋势向下 | ||
|
||
index_df = index_df.loc[31:].reset_index(drop=True) | ||
score_list = [] | ||
for i in range(len(index_df)): | ||
score = compute_score(index_df, i) / 10 | ||
score_list.append(score) | ||
return score_list, list(index_df['trade_date']) | ||
|
||
def get_data(symbol='510300', start_date=datetime.date(2012,4,1), | ||
end_date=datetime.date(2020,4,3), save=False): | ||
|
||
# now = start_date | ||
df_list = [] | ||
client = Quotes.factory(market='std') | ||
s_idx = 0 | ||
while True: | ||
# t = str(now.year)+str(now.month).zfill(2)+str(now.day).zfill(2) | ||
df = client.bars(symbol=symbol, start=s_idx, frequency=0, offset=800) | ||
if df is None: | ||
break | ||
df_list.append(df) | ||
s_idx += 800 | ||
# now = now + datetime.timedelta(1) | ||
df_list = pd.concat(df_list) | ||
if save: | ||
df_list.to_csv(symbol+'.csv', index=None) | ||
return df_list | ||
|
||
|
||
if __name__ == '__main__': | ||
score_list, date_list = comput_space() |
Oops, something went wrong.