Skip to content

Commit

Permalink
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
Browse files Browse the repository at this point in the history
… poolmaxpool_with_mask
  • Loading branch information
NHZlX committed Nov 11, 2017
2 parents 3428a52 + 58b4c9a commit 9e894f6
Show file tree
Hide file tree
Showing 18 changed files with 618 additions and 39 deletions.
5 changes: 5 additions & 0 deletions doc/api/v2/config/layer.rst
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,11 @@ maxout
.. autoclass:: paddle.v2.layer.maxout
:noindex:

roi_pool
--------
.. autoclass:: paddle.v2.layer.roi_pool
:noindex:

Norm Layer
==========

Expand Down
18 changes: 18 additions & 0 deletions paddle/framework/scope.cc
Original file line number Diff line number Diff line change
Expand Up @@ -98,5 +98,23 @@ void Scope::DeleteScope(Scope* scope) {
delete scope;
}

void Scope::Rename(const std::string& origin_name,
const std::string& new_name) const {
auto origin_it = vars_.find(origin_name);
PADDLE_ENFORCE(origin_it != vars_.end(),
"Cannot find original variable with name %s", origin_name);
auto new_it = vars_.find(new_name);
PADDLE_ENFORCE(new_it == vars_.end(),
"The variable with name %s is already in the scope", new_name);
vars_[new_name] = origin_it->second;
vars_.erase(origin_it);
}

std::string Scope::Rename(const std::string& origin_name) const {
auto var_name = string::Sprintf("%p.%d", this, vars_.size());
Rename(origin_name, var_name);
return var_name;
}

} // namespace framework
} // namespace paddle
9 changes: 8 additions & 1 deletion paddle/framework/scope.h
Original file line number Diff line number Diff line change
Expand Up @@ -68,11 +68,18 @@ class Scope {
// enumerate all the variables current contains.
std::vector<std::string> GetAllNames(bool recursive = false) const;

// Rename variable to a new name
void Rename(const std::string& origin_name,
const std::string& new_name) const;

// Rename variable to a new name and return the new name
std::string Rename(const std::string& origin_name) const;

private:
// Call Scope::NewScope for a sub-scope.
explicit Scope(Scope const* parent) : parent_(parent) {}

std::unordered_map<std::string, Variable*> vars_;
mutable std::unordered_map<std::string, Variable*> vars_;
mutable std::list<Scope*> kids_;
Scope const* parent_{nullptr};

Expand Down
220 changes: 220 additions & 0 deletions paddle/gserver/layers/ROIPoolLayer.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,220 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "ROIPoolLayer.h"

namespace paddle {

REGISTER_LAYER(roi_pool, ROIPoolLayer);

bool ROIPoolLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
Layer::init(layerMap, parameterMap);

const ROIPoolConfig& layerConf = config_.inputs(0).roi_pool_conf();
pooledWidth_ = layerConf.pooled_width();
pooledHeight_ = layerConf.pooled_height();
spatialScale_ = layerConf.spatial_scale();

return true;
}

void ROIPoolLayer::forward(PassType passType) {
Layer::forward(passType);

const ROIPoolConfig& layerConf = config_.inputs(0).roi_pool_conf();
height_ = getInput(0).getFrameHeight();
if (!height_) height_ = layerConf.height();
width_ = getInput(0).getFrameWidth();
if (!width_) width_ = layerConf.width();
channels_ = getInputValue(0)->getWidth() / width_ / height_;

size_t batchSize = getInput(0).getBatchSize();
size_t numROIs = getInput(1).getBatchSize();

MatrixPtr dataValue = getInputValue(0);
MatrixPtr roiValue = getInputValue(1);
resetOutput(numROIs, channels_ * pooledHeight_ * pooledWidth_);
MatrixPtr outputValue = getOutputValue();

if (useGpu_) { // TODO(guosheng): implement on GPU later
MatrixPtr dataCpuBuffer;
Matrix::resizeOrCreate(dataCpuBuffer,
dataValue->getHeight(),
dataValue->getWidth(),
false,
false);
MatrixPtr roiCpuBuffer;
Matrix::resizeOrCreate(roiCpuBuffer,
roiValue->getHeight(),
roiValue->getWidth(),
false,
false);
dataCpuBuffer->copyFrom(*dataValue);
roiCpuBuffer->copyFrom(*roiValue);
dataValue = dataCpuBuffer;
roiValue = roiCpuBuffer;
MatrixPtr outputCpuBuffer;
Matrix::resizeOrCreate(outputCpuBuffer,
outputValue->getHeight(),
outputValue->getWidth(),
false,
false);
outputCpuBuffer->copyFrom(*outputValue);
outputValue = outputCpuBuffer;
}

real* bottomData = dataValue->getData();
size_t batchOffset = dataValue->getWidth();
size_t channelOffset = height_ * width_;
real* bottomROIs = roiValue->getData();
size_t roiOffset = roiValue->getWidth();
size_t poolChannelOffset = pooledHeight_ * pooledWidth_;

real* outputData = outputValue->getData();
Matrix::resizeOrCreate(maxIdxs_,
numROIs,
channels_ * pooledHeight_ * pooledWidth_,
false,
false);
real* argmaxData = maxIdxs_->getData();

for (size_t n = 0; n < numROIs; ++n) {
// the first five elememts of each RoI should be:
// batch_idx, roi_x_start, roi_y_start, roi_x_end, roi_y_end
size_t roiBatchIdx = bottomROIs[0];
size_t roiStartW = round(bottomROIs[1] * spatialScale_);
size_t roiStartH = round(bottomROIs[2] * spatialScale_);
size_t roiEndW = round(bottomROIs[3] * spatialScale_);
size_t roiEndH = round(bottomROIs[4] * spatialScale_);
CHECK_GE(roiBatchIdx, 0);
CHECK_LT(roiBatchIdx, batchSize);
size_t roiHeight = std::max(roiEndH - roiStartH + 1, 1UL);
size_t roiWidth = std::max(roiEndW - roiStartW + 1, 1UL);
real binSizeH =
static_cast<real>(roiHeight) / static_cast<real>(pooledHeight_);
real binSizeW =
static_cast<real>(roiWidth) / static_cast<real>(pooledWidth_);
real* batchData = bottomData + batchOffset * roiBatchIdx;
for (size_t c = 0; c < channels_; ++c) {
for (size_t ph = 0; ph < pooledHeight_; ++ph) {
for (size_t pw = 0; pw < pooledWidth_; ++pw) {
size_t hstart = static_cast<size_t>(std::floor(ph * binSizeH));
size_t wstart = static_cast<size_t>(std::floor(pw * binSizeW));
size_t hend = static_cast<size_t>(std::ceil((ph + 1) * binSizeH));
size_t wend = static_cast<size_t>(std::ceil((pw + 1) * binSizeW));
hstart = std::min(std::max(hstart + roiStartH, 0UL), height_);
wstart = std::min(std::max(wstart + roiStartW, 0UL), width_);
hend = std::min(std::max(hend + roiStartH, 0UL), height_);
wend = std::min(std::max(wend + roiStartW, 0UL), width_);

bool isEmpty = (hend <= hstart) || (wend <= wstart);
size_t poolIndex = ph * pooledWidth_ + pw;
if (isEmpty) {
outputData[poolIndex] = 0;
argmaxData[poolIndex] = -1;
}

for (size_t h = hstart; h < hend; ++h) {
for (size_t w = wstart; w < wend; ++w) {
size_t index = h * width_ + w;
if (batchData[index] > outputData[poolIndex]) {
outputData[poolIndex] = batchData[index];
argmaxData[poolIndex] = index;
}
}
}
}
}
batchData += channelOffset;
outputData += poolChannelOffset;
argmaxData += poolChannelOffset;
}
bottomROIs += roiOffset;
}
if (useGpu_) {
getOutputValue()->copyFrom(*outputValue);
}
}

void ROIPoolLayer::backward(const UpdateCallback& callback) {
MatrixPtr inGradValue = getInputGrad(0);
MatrixPtr outGradValue = getOutputGrad();
MatrixPtr roiValue = getInputValue(1);

if (useGpu_) {
MatrixPtr inGradCpuBuffer;
Matrix::resizeOrCreate(inGradCpuBuffer,
inGradValue->getHeight(),
inGradValue->getWidth(),
false,
false);
MatrixPtr outGradCpuBuffer;
Matrix::resizeOrCreate(outGradCpuBuffer,
outGradValue->getHeight(),
outGradValue->getWidth(),
false,
false);
MatrixPtr roiCpuBuffer;
Matrix::resizeOrCreate(roiCpuBuffer,
roiValue->getHeight(),
roiValue->getWidth(),
false,
false);
inGradCpuBuffer->copyFrom(*inGradValue);
outGradCpuBuffer->copyFrom(*outGradValue);
roiCpuBuffer->copyFrom(*roiValue);
inGradValue = inGradCpuBuffer;
outGradValue = outGradCpuBuffer;
roiValue = roiCpuBuffer;
}

real* bottomROIs = roiValue->getData();
size_t numROIs = getInput(1).getBatchSize();
size_t roiOffset = getInputValue(1)->getWidth();

real* inDiffData = inGradValue->getData();
size_t batchOffset = getInputValue(0)->getWidth();
size_t channelOffset = height_ * width_;

real* outDiffData = outGradValue->getData();
size_t poolChannelOffset = pooledHeight_ * pooledWidth_;
real* argmaxData = maxIdxs_->getData();

for (size_t n = 0; n < numROIs; ++n) {
size_t roiBatchIdx = bottomROIs[0];
real* batchDiffData = inDiffData + batchOffset * roiBatchIdx;
for (size_t c = 0; c < channels_; ++c) {
for (size_t ph = 0; ph < pooledHeight_; ++ph) {
for (size_t pw = 0; pw < pooledWidth_; ++pw) {
size_t poolIndex = ph * pooledWidth_ + pw;
if (argmaxData[poolIndex] > 0) {
size_t index = static_cast<size_t>(argmaxData[poolIndex]);
batchDiffData[index] += outDiffData[poolIndex];
}
}
}
batchDiffData += channelOffset;
outDiffData += poolChannelOffset;
argmaxData += poolChannelOffset;
}
bottomROIs += roiOffset;
}

if (useGpu_) {
getInputGrad(0)->copyFrom(*inGradValue);
}
}

} // namespace paddle
56 changes: 56 additions & 0 deletions paddle/gserver/layers/ROIPoolLayer.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "Layer.h"

namespace paddle {

/**
* A layer used by Fast R-CNN to extract feature maps of ROIs from the last
* feature map.
* - Input: This layer needs two input layers: The first input layer is a
* convolution layer; The second input layer contains the ROI data
* which is the output of ProposalLayer in Faster R-CNN. layers for
* generating bbox location offset and the classification confidence.
* - Output: The ROIs' feature map.
* Reference:
* Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
* Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
* Networks
*/

class ROIPoolLayer : public Layer {
protected:
size_t channels_;
size_t width_;
size_t height_;
size_t pooledWidth_;
size_t pooledHeight_;
real spatialScale_;

// Since there is no int matrix, use real maxtrix instead.
MatrixPtr maxIdxs_;

public:
explicit ROIPoolLayer(const LayerConfig& config) : Layer(config) {}

bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;

void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
} // namespace paddle
37 changes: 37 additions & 0 deletions paddle/gserver/tests/test_LayerGrad.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2058,6 +2058,43 @@ TEST(Layer, CropLayer) {
}
}

TEST(Layer, roi_pool) {
TestConfig config;
config.layerConfig.set_type("roi_pool");
config.biasSize = 0;
LayerInputConfig* input = config.layerConfig.add_inputs();
ROIPoolConfig* roiPoolConf = input->mutable_roi_pool_conf();
roiPoolConf->set_pooled_width(7);
roiPoolConf->set_pooled_height(7);
roiPoolConf->set_spatial_scale(1. / 16);
roiPoolConf->set_width(14);
roiPoolConf->set_height(14);

const size_t roiNum = 10;
const size_t roiDim = 10;
const size_t batchSize = 5;
MatrixPtr roiValue = Matrix::create(roiNum, roiDim, false, false);
roiValue->zeroMem();
real* roiData = roiValue->getData();
for (size_t i = 0; i < roiNum; ++i) {
roiData[i * roiDim + 0] = std::rand() % batchSize;
roiData[i * roiDim + 1] = std::rand() % 224; // xMin
roiData[i * roiDim + 2] = std::rand() % 224; // yMin
size_t xMin = static_cast<size_t>(roiData[i * roiDim + 1]);
size_t yMin = static_cast<size_t>(roiData[i * roiDim + 2]);
roiData[i * roiDim + 3] = xMin + std::rand() % (224 - xMin); // xMax
roiData[i * roiDim + 4] = yMin + std::rand() % (224 - yMin); // yMax
}

config.inputDefs.push_back({INPUT_DATA, "input", 3 * 14 * 14, {}});
config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA, "rois", roiValue, {}});
config.layerConfig.add_inputs();

for (auto useGpu : {false, true}) {
testLayerGrad(config, "roi_pool", batchSize, false, useGpu, false);
}
}

TEST(Layer, SwitchOrderLayer) {
TestConfig config;
// config input_0
Expand Down
6 changes: 3 additions & 3 deletions paddle/operators/math/math_function.cc
Original file line number Diff line number Diff line change
Expand Up @@ -234,8 +234,8 @@ void gemv<platform::CPUPlace, double>(const platform::DeviceContext& context,

template struct SetConstant<platform::CPUPlace, float>;

struct TensorSetConstant {
TensorSetConstant(framework::Tensor* tensor, float value)
struct TensorSetConstantCPU {
TensorSetConstantCPU(framework::Tensor* tensor, float value)
: tensor_(tensor), value_(value) {}
template <typename T>
void operator()() const {
Expand All @@ -252,7 +252,7 @@ void set_constant_with_place<platform::CPUPlace>(
const platform::DeviceContext& context, framework::Tensor* tensor,
float value) {
framework::VisitDataType(framework::ToDataType(tensor->type()),
TensorSetConstant(tensor, value));
TensorSetConstantCPU(tensor, value));
}

struct TensorSetConstantWithPlace : public boost::static_visitor<void> {
Expand Down
Loading

0 comments on commit 9e894f6

Please sign in to comment.