forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
… poolmaxpool_with_mask
- Loading branch information
Showing
18 changed files
with
618 additions
and
39 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,220 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "ROIPoolLayer.h" | ||
|
||
namespace paddle { | ||
|
||
REGISTER_LAYER(roi_pool, ROIPoolLayer); | ||
|
||
bool ROIPoolLayer::init(const LayerMap& layerMap, | ||
const ParameterMap& parameterMap) { | ||
Layer::init(layerMap, parameterMap); | ||
|
||
const ROIPoolConfig& layerConf = config_.inputs(0).roi_pool_conf(); | ||
pooledWidth_ = layerConf.pooled_width(); | ||
pooledHeight_ = layerConf.pooled_height(); | ||
spatialScale_ = layerConf.spatial_scale(); | ||
|
||
return true; | ||
} | ||
|
||
void ROIPoolLayer::forward(PassType passType) { | ||
Layer::forward(passType); | ||
|
||
const ROIPoolConfig& layerConf = config_.inputs(0).roi_pool_conf(); | ||
height_ = getInput(0).getFrameHeight(); | ||
if (!height_) height_ = layerConf.height(); | ||
width_ = getInput(0).getFrameWidth(); | ||
if (!width_) width_ = layerConf.width(); | ||
channels_ = getInputValue(0)->getWidth() / width_ / height_; | ||
|
||
size_t batchSize = getInput(0).getBatchSize(); | ||
size_t numROIs = getInput(1).getBatchSize(); | ||
|
||
MatrixPtr dataValue = getInputValue(0); | ||
MatrixPtr roiValue = getInputValue(1); | ||
resetOutput(numROIs, channels_ * pooledHeight_ * pooledWidth_); | ||
MatrixPtr outputValue = getOutputValue(); | ||
|
||
if (useGpu_) { // TODO(guosheng): implement on GPU later | ||
MatrixPtr dataCpuBuffer; | ||
Matrix::resizeOrCreate(dataCpuBuffer, | ||
dataValue->getHeight(), | ||
dataValue->getWidth(), | ||
false, | ||
false); | ||
MatrixPtr roiCpuBuffer; | ||
Matrix::resizeOrCreate(roiCpuBuffer, | ||
roiValue->getHeight(), | ||
roiValue->getWidth(), | ||
false, | ||
false); | ||
dataCpuBuffer->copyFrom(*dataValue); | ||
roiCpuBuffer->copyFrom(*roiValue); | ||
dataValue = dataCpuBuffer; | ||
roiValue = roiCpuBuffer; | ||
MatrixPtr outputCpuBuffer; | ||
Matrix::resizeOrCreate(outputCpuBuffer, | ||
outputValue->getHeight(), | ||
outputValue->getWidth(), | ||
false, | ||
false); | ||
outputCpuBuffer->copyFrom(*outputValue); | ||
outputValue = outputCpuBuffer; | ||
} | ||
|
||
real* bottomData = dataValue->getData(); | ||
size_t batchOffset = dataValue->getWidth(); | ||
size_t channelOffset = height_ * width_; | ||
real* bottomROIs = roiValue->getData(); | ||
size_t roiOffset = roiValue->getWidth(); | ||
size_t poolChannelOffset = pooledHeight_ * pooledWidth_; | ||
|
||
real* outputData = outputValue->getData(); | ||
Matrix::resizeOrCreate(maxIdxs_, | ||
numROIs, | ||
channels_ * pooledHeight_ * pooledWidth_, | ||
false, | ||
false); | ||
real* argmaxData = maxIdxs_->getData(); | ||
|
||
for (size_t n = 0; n < numROIs; ++n) { | ||
// the first five elememts of each RoI should be: | ||
// batch_idx, roi_x_start, roi_y_start, roi_x_end, roi_y_end | ||
size_t roiBatchIdx = bottomROIs[0]; | ||
size_t roiStartW = round(bottomROIs[1] * spatialScale_); | ||
size_t roiStartH = round(bottomROIs[2] * spatialScale_); | ||
size_t roiEndW = round(bottomROIs[3] * spatialScale_); | ||
size_t roiEndH = round(bottomROIs[4] * spatialScale_); | ||
CHECK_GE(roiBatchIdx, 0); | ||
CHECK_LT(roiBatchIdx, batchSize); | ||
size_t roiHeight = std::max(roiEndH - roiStartH + 1, 1UL); | ||
size_t roiWidth = std::max(roiEndW - roiStartW + 1, 1UL); | ||
real binSizeH = | ||
static_cast<real>(roiHeight) / static_cast<real>(pooledHeight_); | ||
real binSizeW = | ||
static_cast<real>(roiWidth) / static_cast<real>(pooledWidth_); | ||
real* batchData = bottomData + batchOffset * roiBatchIdx; | ||
for (size_t c = 0; c < channels_; ++c) { | ||
for (size_t ph = 0; ph < pooledHeight_; ++ph) { | ||
for (size_t pw = 0; pw < pooledWidth_; ++pw) { | ||
size_t hstart = static_cast<size_t>(std::floor(ph * binSizeH)); | ||
size_t wstart = static_cast<size_t>(std::floor(pw * binSizeW)); | ||
size_t hend = static_cast<size_t>(std::ceil((ph + 1) * binSizeH)); | ||
size_t wend = static_cast<size_t>(std::ceil((pw + 1) * binSizeW)); | ||
hstart = std::min(std::max(hstart + roiStartH, 0UL), height_); | ||
wstart = std::min(std::max(wstart + roiStartW, 0UL), width_); | ||
hend = std::min(std::max(hend + roiStartH, 0UL), height_); | ||
wend = std::min(std::max(wend + roiStartW, 0UL), width_); | ||
|
||
bool isEmpty = (hend <= hstart) || (wend <= wstart); | ||
size_t poolIndex = ph * pooledWidth_ + pw; | ||
if (isEmpty) { | ||
outputData[poolIndex] = 0; | ||
argmaxData[poolIndex] = -1; | ||
} | ||
|
||
for (size_t h = hstart; h < hend; ++h) { | ||
for (size_t w = wstart; w < wend; ++w) { | ||
size_t index = h * width_ + w; | ||
if (batchData[index] > outputData[poolIndex]) { | ||
outputData[poolIndex] = batchData[index]; | ||
argmaxData[poolIndex] = index; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
batchData += channelOffset; | ||
outputData += poolChannelOffset; | ||
argmaxData += poolChannelOffset; | ||
} | ||
bottomROIs += roiOffset; | ||
} | ||
if (useGpu_) { | ||
getOutputValue()->copyFrom(*outputValue); | ||
} | ||
} | ||
|
||
void ROIPoolLayer::backward(const UpdateCallback& callback) { | ||
MatrixPtr inGradValue = getInputGrad(0); | ||
MatrixPtr outGradValue = getOutputGrad(); | ||
MatrixPtr roiValue = getInputValue(1); | ||
|
||
if (useGpu_) { | ||
MatrixPtr inGradCpuBuffer; | ||
Matrix::resizeOrCreate(inGradCpuBuffer, | ||
inGradValue->getHeight(), | ||
inGradValue->getWidth(), | ||
false, | ||
false); | ||
MatrixPtr outGradCpuBuffer; | ||
Matrix::resizeOrCreate(outGradCpuBuffer, | ||
outGradValue->getHeight(), | ||
outGradValue->getWidth(), | ||
false, | ||
false); | ||
MatrixPtr roiCpuBuffer; | ||
Matrix::resizeOrCreate(roiCpuBuffer, | ||
roiValue->getHeight(), | ||
roiValue->getWidth(), | ||
false, | ||
false); | ||
inGradCpuBuffer->copyFrom(*inGradValue); | ||
outGradCpuBuffer->copyFrom(*outGradValue); | ||
roiCpuBuffer->copyFrom(*roiValue); | ||
inGradValue = inGradCpuBuffer; | ||
outGradValue = outGradCpuBuffer; | ||
roiValue = roiCpuBuffer; | ||
} | ||
|
||
real* bottomROIs = roiValue->getData(); | ||
size_t numROIs = getInput(1).getBatchSize(); | ||
size_t roiOffset = getInputValue(1)->getWidth(); | ||
|
||
real* inDiffData = inGradValue->getData(); | ||
size_t batchOffset = getInputValue(0)->getWidth(); | ||
size_t channelOffset = height_ * width_; | ||
|
||
real* outDiffData = outGradValue->getData(); | ||
size_t poolChannelOffset = pooledHeight_ * pooledWidth_; | ||
real* argmaxData = maxIdxs_->getData(); | ||
|
||
for (size_t n = 0; n < numROIs; ++n) { | ||
size_t roiBatchIdx = bottomROIs[0]; | ||
real* batchDiffData = inDiffData + batchOffset * roiBatchIdx; | ||
for (size_t c = 0; c < channels_; ++c) { | ||
for (size_t ph = 0; ph < pooledHeight_; ++ph) { | ||
for (size_t pw = 0; pw < pooledWidth_; ++pw) { | ||
size_t poolIndex = ph * pooledWidth_ + pw; | ||
if (argmaxData[poolIndex] > 0) { | ||
size_t index = static_cast<size_t>(argmaxData[poolIndex]); | ||
batchDiffData[index] += outDiffData[poolIndex]; | ||
} | ||
} | ||
} | ||
batchDiffData += channelOffset; | ||
outDiffData += poolChannelOffset; | ||
argmaxData += poolChannelOffset; | ||
} | ||
bottomROIs += roiOffset; | ||
} | ||
|
||
if (useGpu_) { | ||
getInputGrad(0)->copyFrom(*inGradValue); | ||
} | ||
} | ||
|
||
} // namespace paddle |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include "Layer.h" | ||
|
||
namespace paddle { | ||
|
||
/** | ||
* A layer used by Fast R-CNN to extract feature maps of ROIs from the last | ||
* feature map. | ||
* - Input: This layer needs two input layers: The first input layer is a | ||
* convolution layer; The second input layer contains the ROI data | ||
* which is the output of ProposalLayer in Faster R-CNN. layers for | ||
* generating bbox location offset and the classification confidence. | ||
* - Output: The ROIs' feature map. | ||
* Reference: | ||
* Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. | ||
* Faster R-CNN: Towards Real-Time Object Detection with Region Proposal | ||
* Networks | ||
*/ | ||
|
||
class ROIPoolLayer : public Layer { | ||
protected: | ||
size_t channels_; | ||
size_t width_; | ||
size_t height_; | ||
size_t pooledWidth_; | ||
size_t pooledHeight_; | ||
real spatialScale_; | ||
|
||
// Since there is no int matrix, use real maxtrix instead. | ||
MatrixPtr maxIdxs_; | ||
|
||
public: | ||
explicit ROIPoolLayer(const LayerConfig& config) : Layer(config) {} | ||
|
||
bool init(const LayerMap& layerMap, | ||
const ParameterMap& parameterMap) override; | ||
|
||
void forward(PassType passType) override; | ||
void backward(const UpdateCallback& callback = nullptr) override; | ||
}; | ||
} // namespace paddle |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.