forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9acfba8
commit c66b5ce
Showing
2 changed files
with
319 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "MKLDNNConcatLayer.h" | ||
|
||
using namespace mkldnn; // NOLINT | ||
typedef memory::format format; | ||
|
||
namespace paddle { | ||
|
||
REGISTER_LAYER(mkldnn_concat, MKLDNNConcatLayer); | ||
|
||
bool MKLDNNConcatLayer::init(const LayerMap& layerMap, | ||
const ParameterMap& parameterMap) { | ||
if (!MKLDNNLayer::init(layerMap, parameterMap)) { | ||
return false; | ||
} | ||
CHECK_GT(inputLayers_.size(), 1UL); | ||
CHECK(!biasParameter_); | ||
return true; | ||
} | ||
|
||
void MKLDNNConcatLayer::reshape( | ||
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) { | ||
reshapeInput(bs, ih, iw); | ||
ic = inputLayers_[0]->getSize() / ih / iw; | ||
CHECK_EQ((size_t)ic * ih * iw, inputLayers_[0]->getSize()); | ||
CHECK_EQ(inputElemenCnt_, (size_t)bs * ic * ih * iw); | ||
CHECK_GT(inputLayers_.size(), 1UL); | ||
channels_.resize(inputLayers_.size()); | ||
channels_[0] = ic; | ||
oc = ic; | ||
for (size_t i = 1; i < inputLayers_.size(); i++) { | ||
int batchsize, height, witdh; | ||
reshapeInput(batchsize, height, witdh, i); | ||
CHECK_EQ(bs, batchsize); | ||
CHECK_EQ(ih, height); | ||
CHECK_EQ(iw, witdh); | ||
|
||
channels_[i] = inputLayers_[i]->getSize() / height / witdh; | ||
CHECK_EQ((size_t)channels_[i] * height * witdh, inputLayers_[i]->getSize()); | ||
oc += channels_[i]; | ||
} | ||
oh = ih; | ||
ow = iw; | ||
reshapeOutput(oh, ow); | ||
resizeOutput(bs, oc * oh * ow); | ||
} | ||
|
||
void MKLDNNConcatLayer::resetFwd(std::vector<primitive>& pipeline, | ||
MKLDNNMatrixPtr& in, | ||
MKLDNNMatrixPtr& wgt, | ||
MKLDNNMatrixPtr& bias, | ||
MKLDNNMatrixPtr& out) { | ||
resetFwdBuffers(inVals_, out); | ||
in = inVals_[0]; | ||
|
||
std::shared_ptr<concat::primitive_desc> fwdPD; | ||
resetFwdPD(fwdPD, inVals_, out); | ||
|
||
resetFwdPipeline(pipeline, fwdPD, inVals_, out); | ||
} | ||
|
||
void MKLDNNConcatLayer::resetBwd(std::vector<primitive>& pipeline, | ||
MKLDNNMatrixPtr& in, | ||
MKLDNNMatrixPtr& wgt, | ||
MKLDNNMatrixPtr& bias, | ||
MKLDNNMatrixPtr& out) { | ||
resetBwdBuffers(inGrads_, out); | ||
in = inGrads_[0]; | ||
|
||
resetBwdPipeline(pipeline, bwds_, inGrads_, out); | ||
} | ||
|
||
void MKLDNNConcatLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, | ||
MKLDNNMatrixPtr& out) { | ||
inputs.resize(inputLayers_.size()); | ||
bool has8c = false, has16c = false, hasnc = false; | ||
for (size_t i = 0; i < inputs.size(); i++) { | ||
resetInValue(inputs[i], nullptr, i); | ||
CHECK(inputs[i]); | ||
auto dm = inputs[i]->getDims(); | ||
// inputs format can be different, but ndims must equal | ||
CHECK(i == 0 || dm.size() == inputs[0]->getDims().size()); | ||
CHECK_EQ(bs_, dm[0]); | ||
CHECK_EQ(channels_[i], dm[1]); | ||
if (dm.size() > 2) { | ||
CHECK_EQ(ih_, dm[2]); | ||
CHECK_EQ(iw_, dm[3]); | ||
} | ||
if (inputs[i]->getFormat() == format::nc) { | ||
hasnc = true; | ||
} | ||
if (inputs[i]->getFormat() == format::nChw8c) { | ||
has8c = true; | ||
} | ||
if (inputs[i]->getFormat() == format::nChw16c) { | ||
has16c = true; | ||
} | ||
} | ||
|
||
format outFmt; | ||
if (has16c && oc_ % 16 == 0) { | ||
outFmt = format::nChw16c; | ||
} else if (has8c && oc_ % 8 == 0) { | ||
outFmt = format::nChw8c; | ||
} else if (hasnc) { | ||
CHECK(oh_ == 1 && ow_ == 1); | ||
outFmt = format::nc; | ||
} else { | ||
outFmt = format::nchw; | ||
} | ||
memory::dims outDims = | ||
hasnc ? memory::dims{bs_, oc_} : memory::dims{bs_, oc_, oh_, ow_}; | ||
auto outPD = MKLDNNMatrix::createPrimitiveDesc(outDims, outFmt, engine_); | ||
resetOutValue(out, outPD); | ||
} | ||
|
||
void MKLDNNConcatLayer::resetFwdPD(std::shared_ptr<concat::primitive_desc>& pd, | ||
std::vector<MKLDNNMatrixPtr>& inputs, | ||
MKLDNNMatrixPtr out) { | ||
std::vector<memory::primitive_desc> srcPDs; | ||
for (size_t i = 0; i < inputs.size(); i++) { | ||
srcPDs.push_back(inputs[i]->getPrimitiveDesc()); | ||
} | ||
CHECK(out); | ||
pd.reset(new concat::primitive_desc(out->getMemoryDesc(), axis_, srcPDs)); | ||
CHECK_PRIMITIVE_DESC_EQ(out, pd->dst_primitive_desc()); | ||
} | ||
|
||
void MKLDNNConcatLayer::resetFwdPipeline( | ||
std::vector<primitive>& pipeline, | ||
std::shared_ptr<concat::primitive_desc>& pd, | ||
std::vector<MKLDNNMatrixPtr>& inputs, | ||
MKLDNNMatrixPtr& out) { | ||
std::vector<primitive::at> srcs; | ||
for (size_t i = 0; i < inputs.size(); i++) { | ||
srcs.push_back(*(inputs[i])); | ||
} | ||
fwd_.reset(new concat(*pd, srcs, *out)); | ||
pipeline.push_back(*fwd_); | ||
} | ||
|
||
void MKLDNNConcatLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, | ||
MKLDNNMatrixPtr& out) { | ||
CHECK(outVal_); | ||
resetOutGrad(out, outVal_->getPrimitiveDesc()); | ||
CHECK(out); | ||
|
||
inputs.resize(inputLayers_.size()); | ||
for (size_t i = 0; i < inputs.size(); i++) { | ||
CHECK(inVals_[i]); | ||
resetInGrad(inputs[i], inVals_[i]->getPrimitiveDesc(), i); | ||
CHECK_PRIMITIVE_DESC_EQ(inputs[i], inVals_[i]->getPrimitiveDesc()); | ||
} | ||
} | ||
|
||
void MKLDNNConcatLayer::resetBwdPipeline( | ||
std::vector<mkldnn::primitive>& pipeline, | ||
std::vector<std::shared_ptr<mkldnn::primitive>>& prims, | ||
std::vector<MKLDNNMatrixPtr>& inputs, | ||
MKLDNNMatrixPtr& out) { | ||
// reset the backward primitives | ||
memory::dims offsets = {0, 0, 0, 0}; | ||
prims.resize(inputs.size()); | ||
CHECK_EQ(inputs.size(), channels_.size()); | ||
for (size_t i = 0; i < inputs.size(); i++) { | ||
auto viewPD = view::primitive_desc( | ||
out->getPrimitiveDesc(), inputs[i]->getDims(), offsets); | ||
auto bwdPD = reorder::primitive_desc(viewPD.dst_primitive_desc(), | ||
inputs[i]->getPrimitiveDesc()); | ||
prims[i].reset(new reorder(bwdPD, *out, *(inputs[i]))); | ||
offsets[axis_] += channels_[i]; | ||
// push to pipeline | ||
pipeline.push_back(*prims[i]); | ||
} | ||
} | ||
|
||
} // namespace paddle |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include "MKLDNNLayer.h" | ||
#include "mkldnn.hpp" | ||
|
||
namespace paddle { | ||
|
||
/** | ||
* @brief A subclass of MKLDNNLayer Concatenate layer. | ||
* | ||
* The config file api is mkldnn_concat | ||
*/ | ||
class MKLDNNConcatLayer : public MKLDNNLayer { | ||
protected: | ||
std::vector<MKLDNNMatrixPtr> inVals_; | ||
std::vector<MKLDNNMatrixPtr> inGrads_; | ||
std::vector<std::shared_ptr<mkldnn::primitive>> bwds_; | ||
// input channel numbers | ||
std::vector<int> channels_; | ||
|
||
// concat_dimension in MKLDNN | ||
// if axis_ == 0, concat batchsize | ||
// if axis_ == 1, concat channel (default) | ||
int axis_; | ||
|
||
public: | ||
explicit MKLDNNConcatLayer(const LayerConfig& config) | ||
: MKLDNNLayer(config), axis_(1) {} | ||
|
||
~MKLDNNConcatLayer() {} | ||
|
||
bool init(const LayerMap& layerMap, | ||
const ParameterMap& parameterMap) override; | ||
|
||
void reshape( | ||
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override; | ||
|
||
void resetFwd(std::vector<mkldnn::primitive>& pipeline, | ||
MKLDNNMatrixPtr& in, | ||
MKLDNNMatrixPtr& wgt, | ||
MKLDNNMatrixPtr& bias, | ||
MKLDNNMatrixPtr& out) override; | ||
|
||
void resetBwd(std::vector<mkldnn::primitive>& pipeline, | ||
MKLDNNMatrixPtr& in, | ||
MKLDNNMatrixPtr& wgt, | ||
MKLDNNMatrixPtr& bias, | ||
MKLDNNMatrixPtr& out) override; | ||
|
||
void printSizeInfo() override { | ||
CHECK_EQ(channels_.size(), inputLayers_.size()); | ||
for (size_t i = 0; i < channels_.size(); ++i) { | ||
VLOG(MKLDNN_SIZES) << "Input " << i << ", " << inputLayers_[i]->getName() | ||
<< ": " << bs_ << ", " << channels_[i] << ", " << ih_ | ||
<< ", " << iw_; | ||
} | ||
VLOG(MKLDNN_SIZES) << "Output: " << bs_ << ", " << oc_ << ", " << oh_ | ||
<< ", " << ow_; | ||
} | ||
|
||
void printValueFormat() override { | ||
for (size_t i = 0; i < inVals_.size(); ++i) { | ||
VLOG(MKLDNN_FMTS) << "Input " << i << inputLayers_[i]->getName() << ": " | ||
<< inVals_[i]->getFormat() << " >>>"; | ||
} | ||
if (outVal_) { | ||
VLOG(MKLDNN_FMTS) << outVal_->getFormat() << " >>> "; | ||
} | ||
if (extOutVal_) { | ||
VLOG(MKLDNN_FMTS) << extOutVal_->getFormat(); | ||
} | ||
} | ||
|
||
void printGradFormat() override { | ||
if (extOutGrad_) { | ||
VLOG(MKLDNN_FMTS) << extOutGrad_->getFormat(); | ||
} | ||
if (outGrad_) { | ||
VLOG(MKLDNN_FMTS) << outGrad_->getFormat() << " <<< "; | ||
} | ||
for (size_t i = 0; i < inGrads_.size(); ++i) { | ||
VLOG(MKLDNN_FMTS) << "Input " << i << inputLayers_[i]->getName() << ": " | ||
<< inGrads_[i]->getFormat() << "<<<"; | ||
} | ||
} | ||
|
||
protected: | ||
/** | ||
* Forward functions: reset buffers(inputs, output, bias), | ||
* reset primitive descriptor, | ||
* reset pipeline. | ||
*/ | ||
void resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, | ||
MKLDNNMatrixPtr& out); | ||
void resetFwdPD(std::shared_ptr<mkldnn::concat::primitive_desc>& pd, | ||
std::vector<MKLDNNMatrixPtr>& inputs, | ||
MKLDNNMatrixPtr out); | ||
void resetFwdPipeline(std::vector<mkldnn::primitive>& pipeline, | ||
std::shared_ptr<mkldnn::concat::primitive_desc>& pd, | ||
std::vector<MKLDNNMatrixPtr>& inputs, | ||
MKLDNNMatrixPtr& out); | ||
|
||
/** | ||
* Backward functions: reset buffers(inputs, output, bias) | ||
* reset primitives and pipeline | ||
*/ | ||
void resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, | ||
MKLDNNMatrixPtr& out); | ||
void resetBwdPipeline(std::vector<mkldnn::primitive>& pipeline, | ||
std::vector<std::shared_ptr<mkldnn::primitive>>& prims, | ||
std::vector<MKLDNNMatrixPtr>& inputs, | ||
MKLDNNMatrixPtr& out); | ||
}; | ||
|
||
} // namespace paddle |