Skip to content

AD-RL, Boosting Reinforcement Learning with Strongly Delayed Feedback Through Auxiliary Short Delays, ICML 2024, Poster

Notifications You must be signed in to change notification settings

QingyuanWuNothing/AD-RL

Repository files navigation

AD-RL: Boosting Reinforcement Learning with Strongly Delayed Feedback Through Auxiliary Short Delays

guidelines

1. requirement

1.1 setup the environment

conda create -n AD_RL python=3.10
conda activate AD_RL
pip install -r requirement.yaml

1.2 install the benchmarks

pip install gymnasium[mujoco]

2. run the code

2.1 AD-QL (Deterministic MDP)

python3 DETERMINISTIC-MDP.py

2.2 AD-QL (Stochastic MDP)

python3 STOCHASTIC-MDP.py

2.3 AD-DQN (Determinisitc Acrobot)

python3 AD-DQN.py --ENV_NAME=Acrobot-v1 --STOCHASTIC=False --DELAY_STEPS=10 --AUX_DELAY_STEPS=0

2.4 AD-DQN (Stochastic Acrobot)

python3 AD-DQN.py --ENV_NAME=Acrobot-v1 --STOCHASTIC=True --DELAY_STEPS=20 --AUX_DELAY_STEPS=1

2.5 AD-SAC (MuJoCo)

python3 AD-SAC.py --ENV_NAME=Ant-v4 --DELAY_STEPS=25 --AUX_DELAY_STEPS=0

Citation

@inproceedings{wu2024boosting,
  title={Boosting Long-Delayed Reinforcement Learning with Auxiliary Short-Delayed Task},
  author={Wu, Qingyuan and Zhan, Simon Sinong and Wang, Yixuan and Yuhui, Wang and Lin, Chung-Wei and Lv, Chen and Zhu, Qi and Schmidhuber, J{\"u}rgen and Huang, Chao},
  booktitle={International Conference on Machine Learning},
  year={2024},
  organization={PMLR}
}

Acknowledgement

  1. CleanRL: https://github.com/vwxyzjn/cleanrl
  2. SAC: https://github.com/haarnoja/sac

About

AD-RL, Boosting Reinforcement Learning with Strongly Delayed Feedback Through Auxiliary Short Delays, ICML 2024, Poster

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages