AD-RL: Boosting Reinforcement Learning with Strongly Delayed Feedback Through Auxiliary Short Delays
conda create -n AD_RL python=3.10
conda activate AD_RL
pip install -r requirement.yaml
pip install gymnasium[mujoco]
python3 DETERMINISTIC-MDP.py
python3 STOCHASTIC-MDP.py
python3 AD-DQN.py --ENV_NAME=Acrobot-v1 --STOCHASTIC=False --DELAY_STEPS=10 --AUX_DELAY_STEPS=0
python3 AD-DQN.py --ENV_NAME=Acrobot-v1 --STOCHASTIC=True --DELAY_STEPS=20 --AUX_DELAY_STEPS=1
python3 AD-SAC.py --ENV_NAME=Ant-v4 --DELAY_STEPS=25 --AUX_DELAY_STEPS=0
@inproceedings{wu2024boosting,
title={Boosting Long-Delayed Reinforcement Learning with Auxiliary Short-Delayed Task},
author={Wu, Qingyuan and Zhan, Simon Sinong and Wang, Yixuan and Yuhui, Wang and Lin, Chung-Wei and Lv, Chen and Zhu, Qi and Schmidhuber, J{\"u}rgen and Huang, Chao},
booktitle={International Conference on Machine Learning},
year={2024},
organization={PMLR}
}