Skip to content

Code for the paper Longitudinal self-supervision to disentangleinter-patient variability from disease progression

Notifications You must be signed in to change notification settings

QueeneTam/longitudinal_autoencoder

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

longitudinal_autoencoder

Code for the paper Longitudinal self-supervision to disentangle inter-patient variability from disease progression, based on PyTorch 1.7.

Requirements :

Datasets :

Run a test on scalar data :

  • run_test.sh : specify a .csv with first column as ID, second column TIME (e.g. Age), and other columns as monotonic clinical markers.

Launch :

  • sh experiments/run_figure2_table.sh
  • python experiments/run_figure2_table_analysis.py
  • sh experiments/run_figure3_adnicognitive.sh
  • python experiments/run_figure3_adnicognitive_analysis.py

About

Code for the paper Longitudinal self-supervision to disentangleinter-patient variability from disease progression

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.3%
  • Shell 1.7%