Use the GPT-4 api to build a chatGPT chatbot for PDF files who can provide latest information in the Internet.
Tech stack used includes LangChain, LangSmith, Pinecone, Typescript, Openai, and Next.js. LangChain is a framework that makes it easier to build scalable AI/LLM apps and chatbots. Pinecone is a vectorstore for storing embeddings and your PDF in text to later retrieve similar docs.
Based on gpt4-pdf-chatbot-langchain by mayooear.
Prelude: Please make sure you have already downloaded node on your system and the version is 18 or greater.
- Clone the repo or download the ZIP
git clone [github https url]
- Install packages
First run npm install yarn -g
to install yarn globally (if you haven't already).
Then run:
yarn install
After installation, you should now see a node_modules
folder.
- Set up your
.env
file
- Copy
.env.example
into.env
Your.env
file should look like this:
OPENAI_API_KEY=
PINECONE_API_KEY=
PINECONE_ENVIRONMENT=
PINECONE_INDEX_NAME=
TAVILY_API_KEY=
SEARCHAPI_API_KEY =
LANGCHAIN_TRACING_V2=
LANGCHAIN_API_KEY=
LANGCHAIN_PROJECT=
LANGCHAIN_ENDPOINT=
- Visit openai to retrieve API keys and insert into your
.env
file. - Visit pinecone to create and retrieve your API keys, and also retrieve your environment and index name from the dashboard.
- Visit langsmith for debug and see what' going on in your LLM chain.
-
In the
config
folder, replace thePINECONE_NAME_SPACE
with anamespace
where you'd like to store your embeddings on Pinecone when you runnpm run ingest
. This namespace will later be used for queries and retrieval. -
In
utils/makechain.ts
chain change theQA_PROMPT
for your own usecase. ChangemodelName
innew OpenAI
togpt-4
, if you have access togpt-4
api. Please verify outside this repo that you have access togpt-4
api, otherwise the application will not work.
This repo can load multiple PDF files
-
Inside
docs
folder, add your pdf files or folders that contain pdf files. -
Run the script
yarn run ingest
to 'ingest' and embed your docs. If you run into errors troubleshoot below. -
Check Pinecone dashboard to verify your namespace and vectors have been added.
Once you've verified that the embeddings and content have been successfully added to your Pinecone, you can run the app npm run dev
to launch the local dev environment, and then type a question in the chat interface.
Pinecone errors
- Make sure your pinecone dashboard
environment
andindex
matches the one in thepinecone.ts
and.env
files. - Check that you've set the vector dimensions to
1536
. - Make sure your pinecone namespace is in lowercase.
- Pinecone indexes of users on the Starter(free) plan are deleted after 7 days of inactivity. To prevent this, send an API request to Pinecone to reset the counter before 7 days.
- Retry from scratch with a new Pinecone project, index, and cloned repo.
Frontend of this repo is inspired by langchain-chat-nextjs