Skip to content

Commit

Permalink
Fix XCiT hub.load issue (facebookresearch#140)
Browse files Browse the repository at this point in the history
* hub.load xcit from main branch

* Fix other files using hub.load

* Also change torch.hub.list

Co-authored-by: Timothee Darcet <[email protected]>
  • Loading branch information
TimDarcet and Timothee Darcet authored Oct 5, 2021
1 parent 499d9e2 commit cb71140
Show file tree
Hide file tree
Showing 5 changed files with 11 additions and 11 deletions.
2 changes: 1 addition & 1 deletion eval_image_retrieval.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,7 +132,7 @@ def config_qimname(cfg, i):
model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
elif "xcit" in args.arch:
model = torch.hub.load('facebookresearch/xcit', args.arch, num_classes=0)
model = torch.hub.load('facebookresearch/xcit:main', args.arch, num_classes=0)
elif args.arch in torchvision_models.__dict__.keys():
model = torchvision_models.__dict__[args.arch](num_classes=0)
else:
Expand Down
2 changes: 1 addition & 1 deletion eval_knn.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ def extract_feature_pipeline(args):
model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
elif "xcit" in args.arch:
model = torch.hub.load('facebookresearch/xcit', args.arch, num_classes=0)
model = torch.hub.load('facebookresearch/xcit:main', args.arch, num_classes=0)
elif args.arch in torchvision_models.__dict__.keys():
model = torchvision_models.__dict__[args.arch](num_classes=0)
model.fc = nn.Identity()
Expand Down
2 changes: 1 addition & 1 deletion eval_linear.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def eval_linear(args):
embed_dim = model.embed_dim * (args.n_last_blocks + int(args.avgpool_patchtokens))
# if the network is a XCiT
elif "xcit" in args.arch:
model = torch.hub.load('facebookresearch/xcit', args.arch, num_classes=0)
model = torch.hub.load('facebookresearch/xcit:main', args.arch, num_classes=0)
embed_dim = model.embed_dim
# otherwise, we check if the architecture is in torchvision models
elif args.arch in torchvision_models.__dict__.keys():
Expand Down
8 changes: 4 additions & 4 deletions hubconf.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,7 @@ def dino_xcit_small_12_p16(pretrained=True, **kwargs):
"""
XCiT-Small-12/16 pre-trained with DINO.
"""
model = torch.hub.load('facebookresearch/xcit', "xcit_small_12_p16", num_classes=0, **kwargs)
model = torch.hub.load('facebookresearch/xcit:main', "xcit_small_12_p16", num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p16_pretrain/dino_xcit_small_12_p16_pretrain.pth",
Expand All @@ -113,7 +113,7 @@ def dino_xcit_small_12_p8(pretrained=True, **kwargs):
"""
XCiT-Small-12/8 pre-trained with DINO.
"""
model = torch.hub.load('facebookresearch/xcit', "xcit_small_12_p8", num_classes=0, **kwargs)
model = torch.hub.load('facebookresearch/xcit:main', "xcit_small_12_p8", num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p8_pretrain/dino_xcit_small_12_p8_pretrain.pth",
Expand All @@ -127,7 +127,7 @@ def dino_xcit_medium_24_p16(pretrained=True, **kwargs):
"""
XCiT-Medium-24/16 pre-trained with DINO.
"""
model = torch.hub.load('facebookresearch/xcit', "xcit_medium_24_p16", num_classes=0, **kwargs)
model = torch.hub.load('facebookresearch/xcit:main', "xcit_medium_24_p16", num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_pretrain.pth",
Expand All @@ -141,7 +141,7 @@ def dino_xcit_medium_24_p8(pretrained=True, **kwargs):
"""
XCiT-Medium-24/8 pre-trained with DINO.
"""
model = torch.hub.load('facebookresearch/xcit', "xcit_medium_24_p8", num_classes=0, **kwargs)
model = torch.hub.load('facebookresearch/xcit:main', "xcit_medium_24_p8", num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p8_pretrain/dino_xcit_medium_24_p8_pretrain.pth",
Expand Down
8 changes: 4 additions & 4 deletions main_dino.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ def get_args_parser():
# Model parameters
parser.add_argument('--arch', default='vit_small', type=str,
choices=['vit_tiny', 'vit_small', 'vit_base', 'xcit', 'deit_tiny', 'deit_small'] \
+ torchvision_archs + torch.hub.list("facebookresearch/xcit"),
+ torchvision_archs + torch.hub.list("facebookresearch/xcit:main"),
help="""Name of architecture to train. For quick experiments with ViTs,
we recommend using vit_tiny or vit_small.""")
parser.add_argument('--patch_size', default=16, type=int, help="""Size in pixels
Expand Down Expand Up @@ -166,10 +166,10 @@ def train_dino(args):
teacher = vits.__dict__[args.arch](patch_size=args.patch_size)
embed_dim = student.embed_dim
# if the network is a XCiT
elif args.arch in torch.hub.list("facebookresearch/xcit"):
student = torch.hub.load('facebookresearch/xcit', args.arch,
elif args.arch in torch.hub.list("facebookresearch/xcit:main"):
student = torch.hub.load('facebookresearch/xcit:main', args.arch,
pretrained=False, drop_path_rate=args.drop_path_rate)
teacher = torch.hub.load('facebookresearch/xcit', args.arch, pretrained=False)
teacher = torch.hub.load('facebookresearch/xcit:main', args.arch, pretrained=False)
embed_dim = student.embed_dim
# otherwise, we check if the architecture is in torchvision models
elif args.arch in torchvision_models.__dict__.keys():
Expand Down

0 comments on commit cb71140

Please sign in to comment.